Acknowledgement
The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China [grant numbers 51908231 and 51978213], the Fundamental Research Funds for the Central Universities of Huaqiao University [grant number ZQN-912], Natural Science Foundation of Fujian Province [grant number 2020J01058], and the scientific research fund of Huaqiao University [grant number 18BS306].
References
- Blakeborough, A., Williams, M.S., Darby, A.P. and Williams, D.M. (2001), "The development of real-time substructure testing", Philosophical Transactions of the Royal Society of London. Series A: Mathe. Phys. Eng. Sci., 359(1786), 1869-1891. https://doi.org/10.1098/rsta.2001.0877
- Chen, P.C. and Chen, P.C. (2020), "Robust stability analysis of real-time hybrid simulation considering system uncertainty and delay compensation", Smart Struct. Syst., Int. J., 25(6), 719-732. https://doi.org/10.12989/sss.2020.25.6.719
- Carrion, J. and Spencer Jr., B.F. (2007), Model-based Strategies for Real-time Hybrid Testing, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA.
- Carrion, J. and Spencer Jr., B.F. (2008), "Real-time hybrid testing using model-based delay compensation", Smart Struct. Syst., Int. J., 4(6), 809-828. https://doi.org/10.12989/sss.2008.4.6.809
- Chae, Y., Kazemibidokhti, K. and Ricles, J.M. (2013), "Adaptive time series compensator for delay compensation of servohydraulic actuator systems for real-time hybrid simulation", Earthq. Eng. Struct. Dyn., 42(11), 1697-1715. https://doi.org/10.1002/eqe.2294
- Chen, C. and Ricles, J.M. (2009), "Improving the inverse compensation method for real-time hybrid simulation through a dual compensation scheme", Earthq. Eng. Struct. Dyn., 38(10), 1237-1255. https://doi.org/10.1002/eqe.904
- Chen, C. and Ricles, J.M. (2010), "Tracking error-based servohydraulic actuator adaptive compensation for real-time hybrid simulation", J. Struct. Eng., 136(4), 432-440. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000124
- Chen, C., Ricles, J.M. and Guo, T. (2012), "Improved Adaptive Inverse Compensation Technique for Real-Time Hybrid Simulation", J. Eng. Mech., 138(12), 1432-1446. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000450
- Chen, P., Chang, C., Spencer Jr., B.F. and Tsai, K. (2015), "Adaptive model-based tracking control for real-time hybrid simulation", Bull. Earthq. Eng., 13(6), 1633-1653. https://doi.org/10.1007/s10518-014-9681-2
- Chen, C., Yang, Y., Hou, H., Peng, C. and Xu, W. (2022), "Real-time hybrid simulation with multi-fidelity Co-Kriging for global response prediction under structural uncertainties", Earthq. Eng. Struct. Dyn., 51(11), 2591-2609. https://doi.org/10.1002/eqe.3690
- Darby, A.P., Williams, M.S. and Blakeborough, A. (2002), "Stability and delay compensation for real-time substructure testing", J. Eng. Mech., 128(12), 1276-1284. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:12(1276)
- Drazin, P L. and Govindjee, S. (2017), "Hybrid simulation theory for a classical nonlinear dynamical system", J. Sound Vib., 392, 240-259. https://doi.org/10.1016/j.jsv.2016.12.034
- Galmez, C. and Fermandois, G. (2022), "Robust adaptive model-based compensator for the real-time hybrid simulation benchmark", Struct. Control Health Monitor., 29(7). https://doi.org/10.1002/stc.2962
- Gao, X.Y., Castaneda, N. and Dyke, S.J. (2013), "Real time hybrid simulation: from dynamic system, motion control to experimental error", Earthq. Eng. Struct. Dyn., 42(6), 815-832. https://doi.org/10.1002/eqe.2246
- Hakuno, M., Shidawara, M. and Hara, T. (1969), "Dynamic destructive test of a cantilever beam, controlled by an analog-computer", Proceedings of the Japan Society of Civil Engineers, 1969(171), 1-9. https://doi.org/10.2208/jscej1969.1969.171_1
- Horiuchi, T. and Konno, T. (2001), "A new method for compensating actuator delay in real-time hybrid experiments", Philosophical Transactions of the Royal Society of London. Series A: Math. Phys. Eng. Sci., 359(1786), 1893-1909. https://doi.org/10.1098/rsta.2001.0878
- Horiuchi, T., Inoue, M., Konno, T. and Namita, Y. (1999), "Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber", Earthq. Eng. Struct. Dyn., 10(28), 1121-1141. https://doi.org/10.1002/(SICI)1096-9845(199910)28:10<1121::AID-EQE858>3.0.CO;2-O
- Huang, L., Chen, C., Guo, T. and Chen, M.H. (2019), "Stability analysis of real-time hybrid simulation for time-varying actuator delay using the Lyapunov-Krasovskii functional approach", J. Eng. Mech., 145(1). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001550
- Li, H., Maghareh, A., Montoya, H., Uribe, J.W.C., Dyke, S.J. and Xu, Z. (2021), "Sliding mode control design for the benchmark problem in real-time hybrid simulation", Mech. Syst. Signal Process., 151, 107364. https://doi.org/10.1016/j.ymssp.2020.107364
- Li, H., Maghareh, A., Wilfredo Condori Uribe, J., Montoya, H., Dyke, S.J. and Xu, Z. (2022), "An adaptive sliding mode control system and its application to real-time hybrid simulation", Struct. Control Health Monitor., 29(1), e2851. https://doi.org/10.1002/stc.2851
- Marsico, M.R. (2014), "Effects of interface delay in real-time dynamic substructuring tests on a cable for cable-stayed bridge", Smart Struct. Syst., Int. J., 14(6), 1173-1196. https://doi.org/10.12989/sss.2014.14.6.1173
- Nakashima, M. (2020), "Hybrid simulation: An early history", Earthq. Eng. Struct. Dyn., 49(10), 949-962. https://doi.org/10.1002/eqe.3274
- Nakashima, M., Kato, H. and Takaoka, E. (1992), "Development of real-time pseudo dynamic testing", Earthq. Eng. Struct. Dyn., 21(1), 79-92. https://doi.org/10.1002/eqe.4290210106
- Najafi, A. and Spencer Jr., B.F. (2019), "Adaptive model reference control method for real-time hybrid simulation", Mech. Syst. Signal Process., 132, 183-193. https://doi.org/10.1016/j.ymssp.2019.06.023
- Najafi, A. and Spencer Jr., B.F. (2021), "Multiaxial Real-Time Hybrid Simulation for Substructuring with Multiple Boundary Points", J. Struct. Eng., 147(11), 05021007. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003138
- Ning, X., Wang, Z., Zhou, H., Wu, B., Ding, Y. and Xu, B. (2019), "Robust actuator dynamics compensation method for real-time hybrid simulation", Mech. Syst. Signal Process., 131, 49-70. https://doi.org/10.1016/j.ymssp.2019.05.038
- Ning, X., Wang, Z. and Wu, B. (2020), "Kalman filter-based adaptive delay compensation for benchmark problem in real-time hybrid simulation", Appl. Sci., 10(20), 7101. https://doi.org/10.3390/app10207101
- Ning, X., Wang, Z., Wang, C. and Wu, B. (2022), "Adaptive feedforward and feedback compensation method for real-time hybrid simulation based on a discrete physical testing system model", J. Earthq. Eng., 26(8), 3841-3863. https://doi.org/10.1080/13632469.2020.1823912
- Ou, G., Dyke, S.J. and Prakash, A. (2017), "Real time hybrid simulation with online model updating: An analysis of accuracy", Mech. Syst. Signal Process., 84, 223-240. https://doi.org/10.1016/j.ymssp.2016.06.015
- Ouyang, Y., Shi, W., Shan, J. and Spencer Jr., B.F. (2019), "Backstepping adaptive control for real-time hybrid simulation including servo-hydraulic dynamics", Mech. Syst. Signal Process., 130, 732-754. https://doi.org/10.1016/j.ymssp.2019.05.042
- Peiris, L.D.H., du Bois, J.L. and Plummer, A.R. (2021), "Passivity-based adaptive delay compensation for real-time hybrid tests", Proceedings of the Institution of Mechanical Engineers, Part I: J. Syst. Control Eng., 235(3), 427-432. https://doi.org/10.1177/0959651820945515
- Phillips, B.M. and Spencer Jr., B.F. (2013), "Model-based feedforward-feedback actuator control for real-time hybrid simulation", J. Struct. Eng., 139(7), 1205-1214. https://doi.org/10.1177/0959651820945515
- Qian, Y., Ou, G., Maghareh, A. and Dyke, S.J. (2014), "Parametric identification of a servo-hydraulic actuator for real-time hybrid simulation", Mech. Syst. Signal Process., 48(1-2), 260-273. https://doi.org/10.1016/j.ymssp.2014.03.001
- Shao, X. and Reinhorn, A.M. (2012), "Development of a controller platform for force-based real-time hybrid simulation", J. Earthq. Eng., 16(2), 274-295. https://doi.org/10.1080/13632469.2011.597487
- Shi, P., Wu, B., Spencer Jr., B.F., Phillips, B.M. and Chang, C.M. (2016), "Real-time hybrid testing with equivalent force control method incorporating Kalman filter", Struct. Control Health Monitor., 23(4), 735-748. https://doi.org/10.1002/stc.1808
- Silva, C.E., Gomez, D., Maghareh, A., Dyke, S.J. and Spencer Jr., B.F. (2020), "Benchmark control problem for real-time hybrid simulation", Mech. Syst. Signal Process., 135, 106381. https://doi.org/10.1016/j.ymssp.2019.106381
- Tao, J. and Mercan, O. (2019), "A study on a benchmark control problem for real-time hybrid simulation with a tracking error-based adaptive compensator combined with a supplementary proportional-integral-derivative controller", Mech. Syst. Signal Process., 134, 106346. https://doi.org/10.1016/j.ymssp.2019.106346
- Wallace, M.I., Sieber, J., Neild, S.A., Wagg, D.J. and Krauskopf, B. (2005), "Stability analysis of real-time dynamic substructuring using delay differential equation models", Earthq. Eng. Struct. Dyn., 34(15), 1817-1832. https://doi.org/10.1002/eqe.513
- Wang, Z., Wu, B., Bursi, O.S., Xu, G. and Ding, Y. (2014), "An effective online delay estimation method based on a simplified physical system model for real-time hybrid simulation", Smart Struct. Syst., Int. J., 14(6), 1247-1267. https://doi.org/10.12989/.2014.14.6.1247
- Wang, Z., Ning, X., Xu, G., Zhou, H. and Wu, B. (2019), "High performance compensation using an adaptive strategy for real-time hybrid simulation", Mech. Syst. Signal Process., 133, 106262. https://doi.org/10.1016/j.ymssp.2019.106262
- Wang, Z., Xu, G., Li, Q. and Wu, B. (2020), "An adaptive delay compensation method based on a discrete system model for real-time hybrid simulation", Smart Struct. Syst., Int. J., 25(5), 569-580. https://doi.org/10.12989/sss.2020.25.5.569
- Xu, D., Zhou, H., Shao, X. and Wang, T. (2019), "Performance study of sliding mode controller with improved adaptive polynomial-based forward prediction", Mech. Syst. Signal Process., 133, 106263. https://doi.org/10.1016/j.ymssp.2019.106263
- Zhao, J., French, C., Shield, C. and Posbergh, T. (2003), "Considerations for the development of real-time dynamic testing using servo-hydraulic actuation", Earthq. Eng. Struct. Dyn., 32(11), 1773-1794. https://doi.org/10.1002/eqe.301
- Zhou, Z. and Li, N. (2021), "Improving model-based compensation method for real-time hybrid simulation considering error of identified model", J. Vib. Control, 27(21-22), 2523-2535. https://doi.org/10.1177/1077546320961622
- Zhou, H., Xu, D., Shao, X., Ning, X. and Wang, T. (2019), "A robust linear-quadratic-gaussian controller for the real-time hybrid simulation on a benchmark problem", Mech. Syst. Signal Process., 133, 106260. https://doi.org/10.1016/j.ymssp.2019.106260