DOI QR코드

DOI QR Code

Mechanics and Durability Characteristics of Cement Mortar Using Cementitious Materials-based Capsule and Amorphous Metallic Fibers

시멘트계 재료 기반 캡슐 및 비정질금속섬유를 사용한 시멘트 모르타르의 역학 및 내구특성

  • Lee, Jae-In (Dept. of Architectural Engineering, Wonkwang University) ;
  • Choi, Se-Jin (Dept. of Architectural Engineering, Wonkwang University)
  • Received : 2023.03.15
  • Accepted : 2023.04.24
  • Published : 2023.05.30

Abstract

This study aims to improve the self-healing performance of concrete structures by using self-healing capsules composed of amorphous metal fibers and cement-based materials together to mitigate the quality degradation problem of concrete caused by capsules. The amorphous metal fiber reinforcement according to the PCC mixing ratio and the engineering characteristics of mortar were compared and analyzed. To this end, the mortar's fluidity, compressive strength, tensile strength, carbonation, ultrasonic velocity, and chloride ion permeation resistance according to the PCC mixing ratio were measured. As a result of the measurement, the fluidity decreased as the mixing ratio of PCC increased, and the compressive strength showed a tendency to decrease as the mixing ratio of PCC increased regardless of the mixing ratio of amorphous metal fibers. In the case of tensile strength, the mixture using amorphous metal fiber and PCC showed a maximum increase of 46.9% compared to the plain mixture. In the case of the carbonation depth, the lowest carbonation depth was shown in the AF-PCC15 mixture mixed with PCC 15% and amorphous metal fibers.

Keywords

Acknowledgement

본 논문은 교육부의 지원으로 한국연구재단의 기초과학연구사업(과제번호: 2019R1I1A3A01049510)의 일환으로 수행된 연구임을 밝히며 이에 감사를 드립니다.

References

  1. Al-Tabbaa, A., Litina, C., Giannaros, P., Kanellopoulos, A., & Souza, L. (2019). First UK field application and performance of microcapsule-based self-healing concrete. Constr Build Mater, 208(30), 669-685. https://doi.org/10.1016/j.conbuildmat.2019.02.178
  2. Althoey, F., Amin, M.N., Khan, K., Usman, M.M., Khan, M.A., Javed, M.F., Sabri, M.M.S., Alrowais, R., & Maglad, A.M. (2022). Machine learning based computational approach for crack width detection of self-healing concrete. Case Stud. Constr. Mater, 17, 1610.
  3. Ahmad, J., Garcia, R.M., Szelag, M., de-Prado-Gil, J., Marzouki, R., Alqurashi, M., & Hussein, E.E. (2021). Effects of Steel Fibers (SF) and Ground Granulated Blast Furnace Slag (GGBS) on Recycled Aggregate Concrete, Materials, 14(24), 7497.
  4. Aghaee, K., & Khayat, K.H. (2021). Effect of Shrinkage-mitigating materials on performance of fiber-reinforced concrete-An overview, Constr Build Mater, 305(25), 124586.
  5. ASTM C 1202 "Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chlorideion Penetration' (ASTM 2019).
  6. Chen, Y., Liu, P., & Yu, Z. (2018). Effect of Environmental Factors on Concrete Carbonation Depth and Compressive Strength, Materials, 11(11), 2167.
  7. Choi, S.J., Bae, S.H., Lee, J.I., Bang, E.J., Choi, H.Y., & Ko, H.M. (2022). Effect of Bio-Inspired Polymer Types on Engineering Characteristics of Cement Composites, Polymers, 14(9), 1808.
  8. Choi, S.J., Hong, B.T., Lee, S.J., & Won, J.P. (2014). Shrinkage and corrosion resistance of amorphous metallic-fiber-reinforced cement composites, Compos. Struct, 107, 537-543. https://doi.org/10.1016/j.compstruct.2013.08.010
  9. Choi, S.J., Bae, S.H., Ji, D.M., & Kim, S.H. (2022). Effects of Capsule Type on the Characteristics of Cement Mortars Containing Powder Compacted Capsules, Materials, 15(19), 6773.
  10. Choi, K.K., & Ku, D.O. (2015). Flexural behaviour of amorphous metal-fibre-reinforced concrete, Structures and Buildings, 168(1), 15-25.
  11. Choi, Y.W., Oh, S.R., & Choi, B.K. (2017). A study on the Manufacturing Properties of Crack Self-Healing Capsules Using Cement Powder for Addition to Cement Composites, Adv. Mater. Sci. Eng, 2017, 10.
  12. Frazao, C., Barros, J., Camoes, A., Alves, A.C., & Rocha, L. (2016). Corrosion effects on pullout behavior of hooked steel fibers in self-compacting concrete, Cem Concr Res, 79, 112-122. https://doi.org/10.1016/j.cemconres.2015.09.005
  13. John, V.J., & Brindha, D. (2021). Influence of basalt fibers on the mechanical behavior of concrete-A review, Struct. Concr, 22(1), 491-502. https://doi.org/10.1002/suco.201900086
  14. Kim, C.G., Choi, Y.W., Choi, S., & Oh, S.R. (2022). A Study on the Healing Performance of Mortar with Microcapsules Using Silicate-Based Inorganic Materials, Materials, 15(24), 8907.
  15. Kim, H.S., Kim, G.Y., Lee, S.K., Choe, G.C., Nam, J.S., Noguchi, T., & Mechtcherine, V. (2020). Effects of strain rate on the tensile behavior of cementitious composites made with amorphous metallic fiber, Cem Concr Compos, 108, 103519.
  16. Kim, H.S., Kim, G.Y., Nam, J.S., Kim, J,H., Han, S.H., & Lee, S.G. (2015). Static mechanical properties and impact resistance of amorphous metallic fiber-reinforced concrete, Composite Structures, 134(15), 831-844. https://doi.org/10.1016/j.compstruct.2015.08.128
  17. Kim, J.H., Bae, S.H., & Choi, S.J. (2021). Effect of Amorphous Metallic Fibers on Strength and Drying Shrinkage of Mortars with Steel Slag Aggregate, Materials, 14(18), 5403.
  18. KS L 5105. Testing method for compressive strength of hydraulic cement mortars. Korea Industrial Standards, Seoul (Korea): Korean Standards & Certification Information Center; 2007. 5p.
  19. KS F 2423, Standard test method for tensile splitting strength of concrete. Korea Industrial Standards, Seoul (Korea): Korean Standards & Certification Information Center; 2011.
  20. KS F 2731. Standard test method for velocity of ultrasonic pulses to conclude compressive strength of concrete Korea Industrial Standards, Seoul (Korea): Korean Standards & Certification Information Center; 2018.
  21. KS F 2584. Standard test method for accelerated carbonation of concrete. Korea Industrial Standards, Seoul (Korea): Korean Standards & Certification Information Center; 2015.
  22. Li, K., & Li, L. (2019). Crack-altered durability properties and performance of structural concretes, Cem Conrs Res, 124, 105811.
  23. Onyelowe, K.C., Ebid, A.M., Riofrio, A., Baykara, H., Soleymani, A., Mahdi, H.A., Jahangir, H., & Ibe, K. (2022). Multi-Objective Prediction of the Mechanical Properties and Environmental Impact Appraisals of Self-Healing Concrete for Sustainable Structures, Sustainability, 14(15), 9573.
  24. Lee, S.K., Kim, G.Y., Kim, H.S., Son, M.J., Lee, Y.C., Choi, Y.S., Woo, J.M., & Nam, J.S. (2021). Electromagnetic Wave Shielding Properties of Amorphous Metallic Fiber-Reinforced High-Strength Concrete Using Waveguide, Materials, 14(22), 7052.
  25. Lee, J.I., Kim, C.Y., & Choi, S.J. (2022). An Experimental study on engineering properties of self-healing mortar according to PCC (Powder Compacted Capsule) size and mixing ratio, J. Rec Const Resources, 10(4), 514-522.
  26. Li, E., Du, W., Zhang R., Ba, M., Yuan, L., Zhang, Q., & Zhang, Y. (2022). Preparation and characterization of Electromagnetic-Induced Rupture Microcapsules for Self-Repairing Mortars, Materials, 15(10), 3608.
  27. Li, X., Liu, R., Li, S., Zhang, C., Yan, J., Liu, Y., Sun X., & Su P. (2022). Properties and mechanism of self-healing cement paste containing microcapsule under different curing conditions, Constr Build Mater, 357(28), 129410.
  28. Li, Y., & Deng, Y.G. (2021). Mechanical properties and corrosion resistance of high-performance fiber-reinforced concrete with steel or amorphous alloy fibers, Mater. Res. Express, 8(9), 095201.
  29. Malhotra, V. (1976). Testing Hardened Concrete: Nondestructive Methods. Detroit. MI: ACI Monograph 9.
  30. Mohammed, T.U., & Rahman, M.N. (2016). Effect of types of aggregate and sand-to-aggregate volume ratio on UPC in concrete, Constr Bulid Mater, 125(30), 832-841. https://doi.org/10.1016/j.conbuildmat.2016.08.102
  31. Oh, S.R., Lee, K.M., Choi, S., & Choi, Y.W. (2022). Fundamental Properties and Self-Healing Performance of Repair Mortar with Solid Capsules Made Using Inorganic Reactive Powder, Materials, 15(5), 1710.
  32. Oh, S.R., Choi Y.W., & Kim, Y.J. (2019). Effect of cement powder based self-healing solid capsule on the quality of mortar, Constr Build Mater, 214(20), 574-580. https://doi.org/10.1016/j.conbuildmat.2019.04.123
  33. Pilehvar, S., Cao, V.D., Szczotok, A.M., Valentini, L., Salvioni, D., Magistri, M., Pamies, R., & Kjoniksen, A.N. (2017). Mechanical properties and microscale changes of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials, Constr Build Mater, 100, 341-349.
  34. Pan, Z., Zhu, Y., Zhang, D., Chen, N., Yang, Y., & Cai X. (2020). Effect of expansive agents on the workability, crack resistance and durability of shrinkage-compensating concrete with low contents of fibers. Constr Build Mater, 259(30), 119768.
  35. Paul, S.C., Zijl, G.P.G.A.V., & Savija, B. (2020). Effect of Fibers on Durability of Concrete: A Practical Review, Materials, 13(20), 4562.
  36. Pilehvar, S., Szczotok, A.M., Rodriguez, J.F., Valentini, L., Lanzon, M., Pamies, R., & Kjoniksen, A.N. (2019). Effect of freeze thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials, Constr Build Mater, 200(10), 94-103. https://doi.org/10.1016/j.conbuildmat.2018.12.057
  37. Savija, B., Zhang, H., & Schlangen, E. (2017). Influence of Microencapsulated Phase Change Material (PCM) Addition on (Micro) Mechanical Properties of Cement Paste, Materials, 10(8), 863.
  38. Sadrmomtazi, A., Tahmouresi, B., & Saradar, A. (2018). Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC), Constr Build Mater, 162(20), 321-333. https://doi.org/10.1016/j.conbuildmat.2017.11.159
  39. Sun, D., Wenxu, M., Jikun, Ma., Yan, J., Qianjin, M., Yali, W., Jianfeng, W., Lan, M., Wang, Z., Cui, S., & Wang, Z. (2021). The synthesis of DMTDA microcapsules and investigation of self-healing cement paste through an isocyanate-amine system, Cem Concr Compos, 122, 104132.
  40. Tang, Y., & Xu, J. (2021). Application of microbial precipitation in self-healing concrete: A review on the protection strategies for bacteria, Constr Build Mater, 306(1), 124950.
  41. Vermeer, C.M., Rossi, E., Tamis, J., Jonkers, H.M., & Kleerebezem, R. (2021). From waste to self-healing concrete: A proof-of-concept of a new application for polyhydroxyalkanoate, Resour Conserv Recycl, 164, 105206.
  42. Wang, X., Huang, Y., Huang, Y., Zhang, J., Fang, C., Yu, K., Chen, Q., Li, T., Han, R., Yang, Z., Xu, P., Liang, G., Su, D., Ding, X., Li, D., Han, N., & Xing, F. (2019). Laboratory and field study on the performance of microcapsule-based self-healing concrete in tunnel engineering, Constr Build Mater, 220(30), 90-101. https://doi.org/10.1016/j.conbuildmat.2019.06.017
  43. Wang, X., Sun, P., Han, N., & Xing, F. (2017). Experimental Study on Mechanical Properties and Porosity of Organic Microcapsules Based Self-Healing Cementitious Composites, Materials, 10(1), 20.
  44. Won, J.P., Hong, B.T., Lee, S.J., & Choi, S.J. (2013). Bonding properties of amorphous micro-steel fibre-reinforced cementitious composites, Compos. Struct. 102, 101-109. https://doi.org/10.1016/j.compstruct.2013.02.015
  45. Wang, X., Xing, F., Zhang, M., Han, N., & Qian, Z. (2013). Experimental Study on Cementitious Composites Embedded with Organic Microcapsules, Materials, 6(9), 4064-4081. https://doi.org/10.3390/ma6094064
  46. Xu, D., Chen, W., & Fan, X. (2020). Experimental investigation of particle size effect on the self-healing performance of microcapsule for cemented coral sand, Constr Build Mater, 256(30), 119343.
  47. Yang, G., Bi, J., Dong, Z., Li, Y., & Liu, Yi. (2022). Experimental Study on Dynamic Tensile Properties of Macro-Polypropylene Fiber Reinforced Cementitious Composites, Int J Concr Struct Mater, 16(66).
  48. Yang, J.M., Kim, J.K., & Yoo, D.Y. (2017). Performance of shotcrete containing amorphous fibers for tunnel applications, Tunn. Undergr. Space Technol. 64, 85-94. https://doi.org/10.1016/j.tust.2017.01.012
  49. Yao, Z., Xu, Y., Zang, P., Fang, Z., Wang, C., Diaoz Z & Hu, K. (2022). Mechanical Characteristics of Hybrid-Fiber-Reinforced Concrete Shaft Wall Structure Under Uneven Load, Int J Concr Struct Mater, 16(54).
  50. Zheng, D., Song, W., Fu, J., Xue, G., Li, J., & Cao, S. (2020). Research on mechanical characteristics, fractal dimension and internal structure of fiber reinforced concrete under uniaxial compression, Constr Build Mater, 258(20), 120351.