DOI QR코드

DOI QR Code

전돌 가루를 활용한 건축 문화재 수리·복원용 석회 모르타르의 성능 개선

Enhancing the Performance of Lime Mortar for Repairing and Restoring Architectural Heritage Using Traditional Brick Powder

  • 이다희 (한국전통문화대학교 전통건축학과) ;
  • 강성훈 (서울대학교 건축학과) ;
  • 권양희 (한국전통문화대학교 전통건축학과)
  • Lee, Da-Hee (Dept. of Traditional Architecture, Korea National University of Cultural heritage) ;
  • Kang, Sung-Hoon (Dept. of Architecture and Architectural Engineering, Seoul National University) ;
  • Kwon, Yang-Hee (Dept. of Traditional Architecture, Korea National University of Cultural Heritage)
  • 투고 : 2023.02.27
  • 심사 : 2023.05.09
  • 발행 : 2023.05.30

초록

Late Joseon Dynasty documents reveal the use of crushed roof tiles or bricks as additives for mortars. This study suggests a method for enhancing the performance of mortar to restore and repair architectural heritage. To this end, the effects of traditional brick powder on the hydration and strength development of lime mortar were investigated, with firing temperatures (800℃, 1000℃, 1200℃) and particle sizes (<75 ㎛, 75-150 ㎛, 150-300 ㎛ and 300-500 ㎛) of the powder as main variables, while also considering the binder-to-aggregate ratio (1, 2, 3) as an additional variable. This allowed for a clear understanding of the mortar performance, including influencing factors that were not documented in the historical records, such as fire temperature and particle size. The addition of the brick powder affected the workability and compressive strength of the mortar, with the extent of this impact depending on the firing temperature and particle size. The results of tests on the hydration characteristics such as isothermal calorimetry, X-ray diffraction, and thermogravimetric analysis revealed that the brick powder reacts with hydrated lime under specific conditions of temperature (800℃) and particle size (<150 ㎛). This results in a pozzolanic reaction, forming hydration products such as monocarboaluminate, hemicarboaluminate, stringite, and calcium silicate hydrate. The compressive strength of the lime mortar increased by up to 2.2 times as a result of this reaction. These findings can be used to provide direction for improving the performance of repair and restoration mortars.

키워드

참고문헌

  1. Bagbanci, M. B., Ozcan, R., & Bagbanci, O. K. (2010). Characterization of Materials Used in the Fourteenth Century the EARLY OTT OMAN ORDEKLI BATH, BURSA, TURKEY. Studies in Conservation, 55(4), 301-312.  https://doi.org/10.1179/sic.2010.55.4.301
  2. Boke, H., Akkurt, S., Ipekoglu, B., & Ugurlu, E. (2006). Characteristics of brick used as aggregate in historic brick-lime mortars and plasters. Cement and Concrete Research, 36(6), 1115-1122.
  3. Cho, S. W., & Hong, J. G. (2010). A study on the firing technique of the Three Kingdoms Period through firing experiments-Focusing on the materials of the Yongnam region. Field Archaeology, 9, 199-234. https://doi.org/10.35347/jkfa.2010..9.199
  4. Cultural Heritage Administration (2022a). Standard Repair Estimating System for Cultural Heritage. 135-208.
  5. Cultural Heritage Administration (2022b). Standard Specification for Repairing Cultural Heritages, 133-181.
  6. Gameiro, A., Silva, A. S., Faria, P., Grilo, J., Branco, T., Veiga, R., & Velosa, A. (2014). Physical and chemical assessment of lime-metakaolin mortars: Influence of binder: aggregate ratio. Cement and Concrete Composites, 45, 264-271. https://doi.org/10.1016/j.cemconcomp.2013.06.010
  7. Gameiro, A., Silva, A. S., Veiga, R., & Velosa, A. (2012). Hydration products of lime-metakaolin pastes at ambient temperature with ageing. Thermochimica Acta, 535, 36-41. https://doi.org/10.1016/j.tca.2012.02.013
  8. Gleize, P. J. P., Motta, E. V., Silva, D. A., & Roman, H. R. (2009). Characterization of historical mortars from Santa Catarina (Brazil). Cement and Concrete Composites, 31(5), 342-346. https://doi.org/10.1016/j.cemconcomp.2009.02.013
  9. Hu, J., & Wang, K. (2007). Effects of size and uncompacted voids of aggregate on mortar flow ability. Journal of Advanced Concrete Technology, 5(1), 75-85. https://doi.org/10.3151/jact.5.75
  10. Hughes, D. C., & Sugden, D. B. (1999). The use of brickdust as a pozzolanic addition to hydraulic lime mortars. In International RILEM Workshop on Historic Mortars: Characteristics and Tests, RILEM Publications SARL, 351-359.
  11. Hwang, H. Y., & Kwon, Y. H. (2020). A Study on the Walls Recorded in the Yeonggeon-and Sanreng-uigwes in the 17th-19th Centuries-Focusing on the composition of wall and mixing ratio of plaster materials. Journal of the Architectural Institute of Korea Planning & Design, 36(5), 105-116.
  12. Jang, S., & Lee, C. H. (2014). Mineralogical study on interpretation of firing temperature of ancient bricks: Focused on the bricks from the Songsanri tomb complex. Journal of Conservation Science, 30(4), 395-407. https://doi.org/10.12654/JCS.2014.30.4.08
  13. KS L 5105, Test Method for Compressive Strength of Hydraulic Cement Mortar, 2022, 1-5.
  14. KS L 9501, Industrial Lime, 2009, 1-3.
  15. KS L ISO679, Cement-Test methods-Determination of strength-aggregate, 2002, 11-12.
  16. Kang, S. H., Lee, S. O., Hong, S. G., & Kwon, Y. H. (2019). Historical and scientific investigations into the use of hydraulic lime in Korea and preventive conservation of historic masonry structures. Sustainability, 11(19), 5169.
  17. Kang, S. H., & Kang, S. Y. (2022). Changes in the Characteristic of Traditional Lime Reproduction Specimens by adding Perilla Oil. Journal of the Architectural Institute of Korea, 38(5), 259-267.
  18. Kim, S. K., Han, M. S., Moon, E. J., Kim, Y. H., Hwang, J. J., & Lee, H. H. (2010). Mineralogical composition and physical variation of reproduced potteries based on chemical composition and firing temperature. Journal of Conservation Science, 26(3), 311-324.
  19. Lee, D. H. (2023). The Use of Traditional Brick Powder to Improve Performance of Lime Mortar, Department of Traditional Architecture, Korea National University of Cultural Heritage. Master's Thesis, 11-19.
  20. Lee, K. Y. (2010). A study on the existence of lime plaster wall in the Joseon dynasty, based on the analysis of construction reports of ' Sanleong-Uigwe' & 'Yeonggeon-Uigwe' - Emphasized on the government building constructions. Journal of Architectural History, 19(3), 89-106.
  21. Lee, S. H. (2019). A Study on the Traditional Plaster Technique in the period of Joseon Dynasty Using Baekto. Department of Heritage Conservation and Restoration Graduate School, Korean National University of Cultural Heritage, Master's Thesis, 11-82.
  22. Lee, S. O. (2019b). A Study on Building Lime in Joseon Dynasty - Focusing on the Low Grade Limestone and Pozzolanic Materials -. Korea National University of Cultural Heritage, Ph. D. thesis, 21-26.
  23. Lippiello, M., Ceraldi, C., D'Ambra, C., & Lignola, G. P. (2016). Mechanical characterization of ancient pozzolanic mortars with additions of brick and tuff dust: a comparative investigation. In Structural Analysis of Historical Constructions: Anamnesis, Diagnosis, Therapy, Controls. CRC Press, 558-564.
  24. Navratilova, E., & Rovnanikova, P. (2016). Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars. Construction and Building Materials, 120, 530-539. https://doi.org/10.1016/j.conbuildmat.2016.05.062
  25. Nezerka, V., Nemecek, J., Slizkova, Z., & Tesarek, P. (2015). Investigation of crushed brick-matrix interface in lime-based ancient mortar by microscopy and nanoindentation. Cement and Concrete Composites, 55, 122-128. https://doi.org/10.1016/j.cemconcomp.2014.07.023
  26. Park, C. W., Lee, H. I., & Lee, K. Y. (2012). A Research study on fundamental properties of traditional oil compound lime as eco-friendly building material. Journal of the Architectural Institute of Korea Structure & Construction, 28(7), 107-115. 
  27. Park, C. W., Lim, N. G., & Lee, K. Y. (2014). A experimental study on property of matters of traditional starch lime as eco-friendly plaster material. Journal of the Architectural Institute of Korea Structure & Construction, 30(7), 47-54. https://doi.org/10.5659/JAIK_SC.2014.30.7.47
  28. Pavlik, V., & Uzakova, M. (2016). Effect of curing conditions on the properties of lime, lime-metakaolin and lime-zeolite mortars. Construction and Building Materials, 102, 14-25.
  29. Ram, K., Serdar, M., Londono-Zuluaga, D., & Scrivener, K. (2022). The effect of pore microstructure on strength and chloride ingress in blended cement based on low kaolin clay. Case Studies in Construction Materials, 17, e01242.
  30. Sepulcre-Aguilar, A., & Hernandez-Olivares, F. (2010). Assessment of phase formation in lime-based mortars with added metakaolin, Portland cement and sepiolite, for grouting of historic masonry. Cement and Concrete Research, 40(1), 66-76. https://doi.org/10.1016/j.cemconres.2009.08.028
  31. Serry, M. A., Taha, A. S., El-Hemaly, S. A. S., & El-Didamony, H. (1984). Metakaolin-lime hydration products. Thermochimica Acta, 79, 103-110. https://doi.org/10.1016/0040-6031(84)87097-5
  32. Singh, S. K., & Singh, M. (2020). The mineralogical and physical behavior of brick aggregates in twelfth century brick-lime stepwell plasters of Gandhak-ki-baoli, New Delhi. Journal of Architectural Conservation, 26(2), 184-200. https://doi.org/10.1080/13556207.2020.1768480
  33. Toledo Filho, R. D., Goncalves, J. P., Americano, B. B., & Fairbairn, E. M. R. (2007). Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil. Cement and Concrete Research, 37(9), 1357-1365.
  34. Vejmelkova, E., Keppert, M., Rovnanikova, P., Kersner, Z., & Cerny, R. (2012). Application of burnt clay shale as pozzolan addition to lime mortar. Cement and Concrete Composites, 34(4), 486-492. https://doi.org/10.1016/j.cemconcomp.2012.01.001
  35. Wild, S., Gailius, A., Hansen, H., Pederson, L., & Szwabowski, J. (1997). Pozzolanic properties of a variety of European clay bricks. Building Research & Information, 25(3), 170-175. https://doi.org/10.1080/096132197370435
  36. Zhang, D., Zhao, J., Wang, D., Wang, Y., & Ma, X. (2020). Influence of pozzolanic materials on the properties of natural hydraulic lime based mortars. Construction and Building Materials, 244, 118360.