DOI QR코드

DOI QR Code

자율주행자동차의 보급이 수도권 도시공간구조에 미치는 영향 - 통행기회비용 변화에 따른 주택가격분포를 중심으로 -

Impacts of Autonomous Vehicles on Urban Spatial Structure in the Seoul Metropolitan Area - Focusing on Housing Price Distribution According to Changes in Travel Opportunity Cost -

  • Park, Chiyoung (School of Architecture, Soongsil University) ;
  • Kim, Kitae (School of Architecture, Soongsil University)
  • 투고 : 2023.02.21
  • 심사 : 2023.04.16
  • 발행 : 2023.05.30

초록

The changes in travel opportunity cost due to the spread of autonomous vehicles are expected to reduce the burden of long-distance travel and affect preferred residential areas of urban households. This study aims to predict the impact of the spread of autonomous vehicles on urban spatial structure, focusing on the distribution of housing prices in the Seoul Metropolitan Area as it relates to the changes in travel opportunity cost. The current housing price and travel opportunity cost were analyzed through a hedonic price model, and the future housing prices of different scenarios considering the changes in travel opportunity cost were predicted and compared. Compared to the present, the relative housing price distribution or relative price index (RPI) decreased in the range below 20% and increased in the range between 20% and 80%. As the market penetration rate of autonomous vehicles increased, the distribution of the median range of housing prices shifted from downtown Seoul to the adjacent Gyeonggi region. The results of this study suggest that the reduction in travel opportunity cost due to the spread of autonomous vehicles may allow urban households to prefer areas other than the city center as residential areas and mitigate the housing price gap in the Seoul Metropolitan Area.

키워드

과제정보

이 연구는 2021년도 한국연구재단 연구비 지원에 의한 결과의 일부임. 과제번호:2021R1G1A1012698

참고문헌

  1. Alonso, W. (1964). Location and Land Use: Toward a General Theory of Land Rent. Cambridge, Harvard University Press, 201.
  2. Arem, B., Driel, C., & Visser, R. (2006). The impact of cooperative adaptive cruise control on traffic-flow characteristics. IEEE Transactions on Intelligent Transportation Systems, 7(4), 429-436. https://doi.org/10.1109/TITS.2006.884615
  3. Arvin, R., Khattak, A., Kamrani, M., & Rio-Torress, J. (2021). Safety evaluation of connected and automated vehicles in mixed traffic with conventional vehicles at intersections. Journal of Intelligent Transportation Systems, 25(2), 170-187. https://doi.org/10.1080/15472450.2020.1834392
  4. Bae, S., Jo, A., & Lee, S. (2018). Effect of spatial proximity to Han riverside and floor number on apartment price in Seoul. Seoul Studies, 19(1), 21-40. https://doi.org/10.23129/SEOULS.19.1.201803.21
  5. Choi, P., & Min, I. (2016). An empirical evaluation of road location on housing transaction prices. Journal of Real Estate Analysis, 2(2), 61-76. https://doi.org/10.30902/jrea.2016.2.2.61
  6. Correia, G., Looff, E., Cranenburgh, S., Snelder, M., & Arem, B. (2019). On the impact of vehicle automation on the value of travel time while performing work and leisure activities in a car: theoretical insights and results from a stated preference survey. Transportation Research Part A: Policy and Practice, 119, 359-382. https://doi.org/10.1016/j.tra.2018.11.016
  7. Fagnant, D., & Kockelman, K. (2015). Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice, 77, 167-181. https://doi.org/10.1016/j.tra.2015.04.003
  8. Geng, B., Bao, H., & Liang, Y. (2015). A study of the effect of a high-speed rail station on spatial variations in housing price based on the hedonic model. Habitat International, 49, 333-339. https://doi.org/10.1016/j.habitatint.2015.06.005
  9. Goodall, N., & Smith, B. (2013). Traffic signal control with connected vehicles. Transportation Research Record, 2381(1), 65-72. https://doi.org/10.3141/2381-08
  10. Heo, S., & Kwak, S. (1994). An analysis of the implicit price of housing characteristics in Seoul apartment market. Housing Studies, 2(2), 27-42.
  11. Hewitt, C., & Hewitt, W. (2012). The effect of proximity to urban rail on housing prices in Ottawa. Journal of Public Transportation, 15(4), 43-65. https://doi.org/10.5038/2375-0901.15.4.3
  12. Hill, R., & Trojanek, R. (2022). An evaluation of competing methods for constructing house price indexes: the case of Warsaw. Land Use Policy, 120, 106226.
  13. Hong, J., Ham, J., & Kim, H. (2005). Variable selection for logistic regression model using adjusted coefficients of determination. The Korean Journal of Applied Statistics, 18(2), 435-443. https://doi.org/10.5351/KJAS.2005.18.2.435
  14. Huang, Z., Chen, R., Xu, D., & Zhou, W. (2017). Spatial and hedonic analysis of housing prices in Shanghai. Habitat International, 67, 69-78. https://doi.org/10.1016/j.habitatint.2017.07.002
  15. Hyun, J., & Kim, J. (2014). The effects of transit-share and job-housing balance on commuting travel. Journal of Transport Research, 21(4), 17-32. https://doi.org/10.34143/JTR.2014.21.4.17
  16. Jang, J., Cheon, S., & Lee, S. (2021). Analysis of factors affecting satisfaction with commuting Time in the era of autonomous driving. The Journal of The Korea Institute of Intelligent Transportation Systems, 20(5), 172-185. https://doi.org/10.12815/kits.2021.20.5.172
  17. Jang, K., Hur, Y., Kim, H., & Kim, S. (2009). The spatial distribution and changes of affordable housing in Seoul. Journal of Korea Planning Association, 44(1), 87-99.
  18. Jeon, Y., & Park, S. (2020). The effect of a shopping center on apartment prices: evidence from Seoul Lotte World Tower. Journal of Industrial Economics and Business, 33(1), 245-267. https://doi.org/10.22558/jieb.2020.2.33.1.245
  19. Jin, J., Jin, E., & Kim, D. (2017). Commuting time and happiness in Seoul. Journal of Korea Planning Association, 52(2), 99-116. https://doi.org/10.17208/jkpa.2017.04.52.2.99
  20. Jun, M., & Ahn, H. (2016). An empirical test of trade-off between housing rents and commuting costs for the commuters in Seoul. Journal of The Korean Regional Development Association, 28(3), 25-40. https://doi.org/10.22885/KRDA.2016.28.3.25
  21. Kang, C., & Rho, T. (2010). A study on the land price impacts of job accessibility in North Seoul, Korea. Journal of the Korea Real Estate Analysts Association, 16(2), 21-38.
  22. Kiel, K., & Zabel, J. (2004). Location, location, location: the 3L approach to house price determination. Journal of Housing Economics, 17(2), 175-190. https://doi.org/10.1016/j.jhe.2007.12.002
  23. Kim, J., Kim, D., & Park, S. (2004). An integrated requirements analysis method based on goal and scenario. Journal of KIISE: Software and Applications, 31(5), 543-554.
  24. Kim, K., Lee, J., & Yun, I. (2017). Calculation of travel time values in Seoul Metropolitan Area considering unique travel patterns. Korean Society of Transportation, 35(6), 481-498. https://doi.org/10.7470/jkst.2017.35.6.481
  25. Kim, Y., & Baek, S. (2019). A study on the impact of the traffic location factors on apartment prices: with focus on the transit station area in Seoul. Korea Real Estate Review, 29(3), 105-123. https://doi.org/10.35136/krer.29.3.7
  26. Ko, Y., Yook, D., & Rho, J. (2017) Assessing benefits of autonomous vehicle system implementation through the network capacity analysis. The Korea Spatial Planning Review, 93, 17-24. https://doi.org/10.15793/KSPR.2017.93..002
  27. Kolarova, V., Steck, F., & Birke, F. (2019). Assessing the effect of autonomous driving on value of travel time savings: a comparison between current and future preferences. Transportation Research Part A: Policy and Practice, 129, 155-169. https://doi.org/10.1016/j.tra.2019.08.011
  28. Krueger, R., Rashidi, T., & Dixit, V. (2019). Autonomous driving and residential location preferences: evidence from a stated choice survey. Transportation Research Part C: Emerging Technologies, 108, 255-268. https://doi.org/10.1016/j.trc.2019.09.018
  29. Lee, S., & Chun, K. (2012). A study of the influences of urban infrastructure on housing prices: a hierarchical model. Journal of Korea Planning Association, 47(4), 193-204.
  30. Lee, Y. (1994). Testing main effects in interactive multiple regression. Korean Management Review, 23(4), 183-210.
  31. Lim, J. (2010). Trends of determinants of housing price in Seoul, Korea: a quantile regression analysis. The Korea Spatial Planning Review, 67, 41-56. https://doi.org/10.15793/kspr.2010.67..003
  32. Liu, H., Kan, X., Shladover, S., Lu, X., & Ferlis, R. (2018). Modeling impacts of cooperative adaptive cruise control on mixed traffic flow in multi-lane freeway facilities. Transportation Reserach Part C: Emerging Technologies, 95, 261-279. https://doi.org/10.1016/j.trc.2018.07.027
  33. Liu, F., Zhao, F., Liu, Z., & Hao, H. (2019). Can autonomous vehicle reduce greenhouse gas emissions? a country-level evaluation. Energy Policy, 132, 462-473. https://doi.org/10.1016/j.enpol.2019.06.013
  34. Lu, Q., Tettamanti, T., Horcher, D., & Varga, I. (2020). The impact of autonomous vehicles on urban traffic network capacity: an experimental analysis by microscopic traffic simulation. Transportation Letters, 12(8), 540-549. https://doi.org/10.1080/19427867.2019.1662561
  35. Mersky, A., & Samaras, C. (2016). Fuel economy testing of autonomous vehicles. Transportation Research Part C: Emerging Technologies, 65, 31-48. https://doi.org/10.1016/j.trc.2016.01.001
  36. Nam, H., & Seo, W. (2016). Dynamic impacts of spatial proximity of school on apartment resale prices. Korea Real Estate Review. 26(2), 97-109.
  37. Ohm, G., Yoon, C., & Lim, D. (2006). The effect of educational environments on housing price. Journal of Economics Studies, 24(4), 99-115. 
  38. Ohm, Y. (2021). Changes in Housing Location Preference with the Introduction of Self-driving Cars and C-ITS. Master Thesis, Seoul National University.
  39. Papadoulis, A., Quddus, M., & Imprialou, M. (2019). Evaluating the safety impact of connected and autonomous vehicles on motorways. Accident Analysis & Prevention, 124, 12-22. https://doi.org/10.1016/j.aap.2018.12.019
  40. Park, K., & Jun, H. (2021). Voluntary and involuntary residential mobility factors: a comparative study between the Seoul and Busan Metropolitan Areas. The Korean Journal of Public Administration, 30(3), 163-197.
  41. Park, N., & Lee, S. (2013). Effects of regional and neighborhood living environment on mixed use apartment prices. Korea Real Estate Review, 23(2), 153-170.
  42. Poudyal, N., Hodges, D., & Merrett, C. (2009). A hedonic analysis of the demand for and benefits of urban recreation parks. Land Use Policy, 26(4), 975-983. https://doi.org/10.1016/j.landusepol.2008.11.008
  43. Seo, H., Kim, M., Jung, C., & Kim, H. (2020). Impacts of commercialization of autonomous vehicles on commercial spatial structures. Journal of the Korea Real Estate Analysts Association, 26(4), 93-110 https://doi.org/10.19172/KREAA.26.4.5
  44. Seo, W. (2019). Comparing the housing implicit prices of restricted and unrestricted hedonic price models. Journal of Korea Planning Association, 54(6), 80-88. https://doi.org/10.17208/jkpa.2019.11.54.6.80
  45. Steck, F., Kolarova, V., Brike, F., Trommer, S., & Lenz, B. (2018). How autonomous driving may affect the value of travel time savings for commuting. Transportation Research Record, 2672(46), 11-20. https://doi.org/10.1177/0361198118757980
  46. Szimba, E., & Hartmann, M. (2020). Assessing travel time savings and user benefits of automated driving - a case study for a commuting relation. Transport Policy, 98, 229-237. https://doi.org/10.1016/j.tranpol.2020.03.007
  47. Tak, S., Kim, H., Kang, K., & Lee, D. (2019). A study on the introduction for automated vehicle-based mobility service considering the level of service of road infrastructure. The Journal of The Korea Institute of Intelligent Transportation Systems, 18(5), 19-33. https://doi.org/10.12815/kits.2019.18.5.19
  48. Waddell, P., Berry, B, & Hoch, I. (1993). Housing price gradients: the intersection of space and built form. Geographical Analysis, 25(1), 5-19. https://doi.org/10.1111/j.1538-4632.1993.tb00276.x
  49. Xie, D., Zhao, X., & He, Z. (2019). Heterogeneous traffic mixing regular and connected vehicles: modeling and stabilization. IEEE Transactions on Intelligent Transportation Systems, 20(6), 2060-2071. https://doi.org/10.1109/TITS.2018.2857465
  50. Yang, G., & Chun, H. (2022). Analysis of the relationship between housing prices and regional characteristics using machine learning and XAI. Korea Real Estate Review, 32(3), 7-24.
  51. Zhao, Y., & Ke, J. (2021). The impact of shared mobility services on housing values near subway stations. Transportation Research Part D: Transport and Environment, 101, 103097.
  52. Zhong, H., Li, W., Burris, M., Talebpour, A., & Sinha, K. (2020). Will autonomous vehicles change auto commuters' value of travel time?. Transportation Research Part D: Transport and Environment, 83, 102303.