DOI QR코드

DOI QR Code

Short-circuit fault detection scheme for DC microgrids on offshore platforms

  • Zhenyu Li (School of Marine Engineering, Jimei University) ;
  • Huiran Sui (School of Marine Engineering, Jimei University) ;
  • Ruifang Zhang (School of Marine Engineering, Jimei University) ;
  • Guoling Wang (School of Marine Engineering, Jimei University) ;
  • Huiyin Cai (Xiamen Institute of Technology)
  • Received : 2022.10.11
  • Accepted : 2023.02.22
  • Published : 2023.05.20

Abstract

DC microgrids present a very effective solution that enables the power systems of offshore platforms to achieve increased integration of renewable sources. Since the areas of offshore platforms are limited, the associated DC microgrids have lower line impedances, and short-circuit faults cause fault currents to rise rapidly. Thus, fault detection is a challenging issue due to the strict time limits for interruption imposed by these rapid rising fault currents. According to the fault characteristics and the ring structure of DC microgrids, this paper proposes a rapid detection scheme based on the differential current and current derivative without de-energizing the entire DC microgrid. It achieves rapid and selective fault detection and ensures an uninterruptible load power. The synchronization issues of the current differential and a rapid processing method for fault currents are investigated. The tripping threshold settings are discussed. Implementation of the fault detection scheme is also presented in detail. The proposed scheme is verified on a physical experimental platform. It is shown that here are some advantages such as good selectivity, low cost, and rapid fault detection. The scheme provides a strong guarantee for the uninterruptible operation of important equipment on offshore platforms.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation for Young Scholars of China under Grant 51809114; the Natural Science Foundation of Fujian province under Grant 2020J01685; and the Jimei University Foundation under Grant ZQ2020020 and Grant ZP2020006.

References

  1. Meng, Q.W., Gao, H., Zhong, Z.F.: Safety analysis of offshore platform power system considering low voltage crossing capability. IEEE Access. 8, 140621-140631 (2020) https://doi.org/10.1109/ACCESS.2020.3012155
  2. Zhu, Z., Tang, Y., Han, T.: Offshore platform detection based on harris detector and intensity-texture image from Sentinel_2A image. In: 2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS). Changsha China, pp. 1-04 (2018)
  3. Kamarlouei, M.: Experimental analysis of wave energy converters concentrically attached on a floating offshore platform. Renewa. Energy. 152, 1171-1185 (2020) https://doi.org/10.1016/j.renene.2020.01.078
  4. Shah, K.A., Meng, F., Li, Y., et al.: A synthesis of feasible control methods for floating offshore wind turbine system dynamics. Renew. Sustain. Energy Rev. 151, 111525 (2021)
  5. Md, R.K.R., Mehnaz, A.K., Iqbal, H.: Local measurement-based protection coordination system for a standalone DC microgrid. IEEE Trans. Ind. Appl. 57(5), 5332-5344 (2021) https://doi.org/10.1109/TIA.2021.3091945
  6. Sharma, N.K., Pattanayak, R., Samantaray, S.R., Bhende, C.N.: A fast fault detection scheme for low voltage DC microgrid. In: 2020 21st National Power System Conference (NPSC). Gandhinagar, India, pp. 1-6 (2020)
  7. Emhemed, A.A.S., Fong, K., Fletcher, S., Burt, G.M.: Validation of fast and selective protection scheme for an LVDC distribution network. IEEE Trans. Power Deliv. 32(3), 1432-1440 (2017) https://doi.org/10.1109/TPWRD.2016.2593941
  8. Shabani, A., Mazlumi, K.: Evaluation of a communication-assisted overcurrent protection scheme for photovoltaic-based DC microgrid. IEEE Trans. Smart Grid. 11(1), 429-439 (2020) https://doi.org/10.1109/TSG.2019.2923769
  9. Shamsoddini, M., Vahidi, B., Razani, R., Mohamed, Y.A.: A novel protection scheme for low voltage DC microgrid using inductance estimation. Int.l J. Electr. Power Energy Syst. 120, 105992 (2020)
  10. Augustine, S., Reno, M.J., Brahma, S.M., Lavrova, O.: Fault current control and protection in a standalone dc microgrid using adaptive droop and current derivative. IEEE J. Emerg. Top. Power Electron. 9(3), 2529-2539 (2021)
  11. Dhar, S., Patnaik, R.K., Dash, P.K.: Fault detection and location of photovoltaic based DC microgrid using differential protection strategy. IEEE Trans. Smart Grid. 9(5), 4303-4312 (2017) https://doi.org/10.1109/TSG.2017.2654267
  12. Steven, D.A.F., Patrick, J.N., Kenny, F., Galloway, S.J., Graeme, M.B.: High-speed differential protection for smart DC distribution systems. IEEE Trans. Smart Grid. 5(5), 2610-2617 (2014) https://doi.org/10.1109/TSG.2014.2306064
  13. Chen, Y., Haj-ahmed, M.A., Illindala, M.S.: Protection strategies for medium-voltage direct-current microgrid at a remote area mine site. IEEE Trans. Ind. Appl. 51(4), 2846-2853 (2015) https://doi.org/10.1109/TIA.2015.2391441
  14. Li, H.J., Chen, M., Yang, B.P., Blaabjerg, F., Xu, D.H.: Fast fault protection based on direction of fault current for the high-surety power-supply system. IEEE Trans. Power Electron. 34(6), 5787-5802 (2019) https://doi.org/10.1109/TPEL.2018.2870982
  15. Neelesh, Y., Narsa, R.T.: Short-circuit fault detection and isolation using flter capacitor current signature in low-voltage DC microgrid applications. IEEE Trans. Ind. Electron. 69(8), 8491-8500 (2022) https://doi.org/10.1109/TIE.2021.3109523
  16. Yang, Y., Huang, C., Zhou, D., et al.: Fault detection and location in multi-terminal DC microgrid based on local measurement. Electr. Power Syst. Res. 194, 107047 (2021)
  17. Jayamaha, D.K.J.S., Lidula, N.W.A., Rajapakse, A.D.: Waveletmulti resolution analysis based ANN architecture for fault detection and localization in DC microgrids. IEEE Access. 7, 145371-145384 (2019) https://doi.org/10.1109/ACCESS.2019.2945397
  18. Lin, H.W., Sun, K., Tan, Zh.H., Liu, C.X., Guerrero, J.M., Vasquez, J.C.: Adaptive protection combined with machine learning for microgrids. IET Gener. Transm. Distrib. 13(6), 770-779 (2019) https://doi.org/10.1049/iet-gtd.2018.6230
  19. Mohanty, R., Pradhan, A.K.: Protection of smart DC microgrid with ring configuration using parameter estimation approach. IEEE Trans. Smart Grid. 9(6), 6328-6337 (2018) https://doi.org/10.1109/TSG.2017.2708743
  20. Yao, G., Ji, F.P., Yin, Z.Z., Zhou, L.D., Wang, F.H.: Review on the research of DC power distribution power quality. Power Syst. Prot. Control. 45(16), 163-170 (2017)
  21. Kim, D., Kim, S.: Design and analysis of hybrid DC circuit breaker for LVDC grid systems. J. Power Electron. 21(9), 1395-1405 (2021) https://doi.org/10.1007/s43236-021-00272-2
  22. Xi, J.W., Pei, X.Z., Niu, L.Y., et al.: A solid-state circuit breaker for DC system using series and parallel connected IGBTs. Int. J. Electr. Power Energy Syst. 139, 107996 (2022)
  23. Wang, G.L., Liu, Y.J., Li, Y., Xu, S.X., Lin, G. Z.: A wind-light and storage DC microgrid system in a floating mobile platform about wind measured by radar. CHINA. Patent 201910841120.7, (2019)
  24. Li, Z.Y., Wang, G.L., Yang, Y.S., Yang, R.F., Xu, S.X.: A combined short-circuit fault detection method for DC microgrid system in an offshore platform. Chin. J. Sci. Instrum. 42(1), 157-164 (2021)
  25. Meghwani, A., Srivastava, S.C., Chakrabarti, S.: A non-unit protection scheme for DC microgrid based on local measurements. IEEE Trans. Power Deliv. 32(1), 172-181 (2017) https://doi.org/10.1109/TPWRD.2016.2555844
  26. Shamsoddini, M., Vahidi, B., Razani, R., et al.: A novel protection scheme for low voltage DC microgrid using inductance estimation. Int. J. Electr. Power Energy Syst. 120, 105992 (2020)
  27. Emhemed, A., Fong, K., Fletcher, S., et al.: Validation of fast and selective protection scheme for an LVDC distribution network. IEEE Trans. Power Deliv. 32(3), 1432-1440 (2017) https://doi.org/10.1109/TPWRD.2016.2593941
  28. Mohanty, R., Pradhan, A.: Protection of smart DC microgrid with ring configuration using parameter estimation approach. IEEE Trans. Smart Grid. 9(6), 6328-6337 (2017) https://doi.org/10.1109/TSG.2017.2708743