DOI QR코드

DOI QR Code

Parameter design of active damping-based shunt hybrid active power filters

  • Jianhang Lu (School of Automation, Guangdong University of Technology) ;
  • Miao Zhang (School of Automation, Guangdong University of Technology) ;
  • Junming Wen (School of Automation, Guangdong University of Technology) ;
  • Dali Zheng (School of Automation, Guangdong University of Technology) ;
  • Shaoli Deng (School of Automation, Guangdong University of Technology) ;
  • Xiang Shi (School of Automation, Guangdong University of Technology) ;
  • Ling Yang (School of Automation, Guangdong University of Technology)
  • Received : 2022.04.14
  • Accepted : 2022.11.18
  • Published : 2023.05.20

Abstract

This paper presents the parameter design of a new topology of hybrid active power filter (HAPF), which makes the system capacity smaller. Based on the main topological circuit, the passive LC single-tuned circuit shunted into the HAPF effectively reduces the capacity of the system. By introducing the grid voltage feedforward method, the DC-side voltage control becomes relatively stable, and the fundamental reactive current flowing through the converter is effectively reduced. Meanwhile, to suppress the resonance of the HAPF, the state variable feedback method is adopted. According to theoretical analysis, a simulation model of the system is built in the MATLAB environment. Then a low-voltage experimental HAPF platform is built to validate the result of the simulations.

Keywords

Acknowledgement

This research was funded by Natural Science Foundation of Guangdong Province, China, grant number 2015A030313487.

References

  1. Zhang, H., Tolbert, L.M.: Efficiency impact of silicon carbide power electronics for modern wind turbine full scale frequency converter. IEEE Trans. Industr. Electron. 58(1), 21-28 (2011) https://doi.org/10.1109/TIE.2010.2048292
  2. Motta, L., Faundes, N.: Active/passive harmonic filters: applications, challenges & trends. International Conference on Harmonics and Quality of Power (ICHQP), 657-662 (2016)
  3. Gali, V., Gupta, N., Gupta, R.A.: Mitigation of power quality problems using shunt active power filters: A comprehensive review. Conference on Industrial Electronics and Applications (ICIEA), 1100-1105 (2017)
  4. Dixon, J., del Valle, Y., Orchard, M., Ortuzar, M., Moran, L., Maffrand, C.: A full compensating system for general loads, based on a combination of thyristor binary compensator, and a PWM-IGBT active power filter. IEEE Trans. Industr. Electron. 50(5), 982-989 (2003) https://doi.org/10.1109/TIE.2003.817604
  5. Pomilio, J.A., Deckmann, S.M.: Characterization and compensation of harmonics and reactive power of residential and commercial loads. IEEE Trans. Power Deliv. 22(2), 1049-1055 (2007) https://doi.org/10.1109/TPWRD.2007.893179
  6. Das, J.C.: Passive filters-potentialities, limitations. IEEE Trans. Ind. Appl. 40(1), 232-241 (2004) https://doi.org/10.1109/TIA.2003.821666
  7. Mindykowski, J., Tarasiuk, T., Rupnik, P.: Problems of passive filters application in system with varying frequency. International Conference on Electrical Power Quality and Utilisation, 1-4 (2007)
  8. Akagi, H.: Active harmonic filters. Proc. IEEE 93(12), 2128-2141 (2005) https://doi.org/10.1109/JPROC.2005.859603
  9. Akagi, H., Nabae, A., Atoh, S.: Control strategy of active power filters using multiple voltage-source PWM converters. IEEE Trans. Ind. Appl. 22(3), 460-465 (1986) https://doi.org/10.1109/TIA.1986.4504743
  10. Rivas, D., Moran, L., Dixon, J.W., Espinoza, J.R.: Improving passive filter compensation performance with active techniques. IEEE Trans. Industr. Electron. 50(1), 161-170 (2003) https://doi.org/10.1109/TIE.2002.807658
  11. Gong, C., Sou, W.-K., Lam, C.-S.: H∞ optimal control design of static var compensator coupling hybrid active power filter based on harmonic state-space modeling. CPSS trans. Power Electr Appl 6(3), 227-234 (2021) https://doi.org/10.24295/CPSSTPEA.2021.00021
  12. Luo, A., Shuai, Z., John Shen, Z., Zhu, W., Xu, X.: Design considerations for maintaining DC-side voltage of hybrid active power filter with injection circuit. IEEE Trans. Power Electron. 24(1), 75-84 (2009) https://doi.org/10.1109/TPEL.2008.2005501
  13. Luo, A., Tang, C., Shuai, Z.K., Zhao, W., Rong, F., Zhou, K.: A novel three-phase hybrid active power filter with a series resonance circuit tuned at the fundamental frequency. IEEE Trans. Industr. Electron. 56(7), 2431-2440 (2009) https://doi.org/10.1109/TIE.2009.2020082
  14. Shuai, Z., Luo, A., Shen, J., Wang, X.: Double closed-loop control method for injection-type hybrid active power filter. IEEE Trans. Power Electron. 26(9), 2393-2403 (2011) https://doi.org/10.1109/TPEL.2010.2103368
  15. Luo, A., Xu, X., Fang, L., Fang, H., Wu, J., Wu, C.: Feedback-feedforward PI-type iterative learning control strategy for hybrid active power filter with injection circuit. IEEE Trans. Industr. Electron. 57(11), 3767-3779 (2011)
  16. Xiang, Z., Pang, Y., Wang, L., Wong, C.-K., Lam, C.-S., Wong, M.-C.: Design, control and comparative analysis of an LCLC coupling hybrid active power filter. IET Power Electronics. 13(6), 1207-1217 (2020) https://doi.org/10.1049/iet-pel.2019.0910
  17. Park, S., Sung, J.-H., Nam, K.: A new parallel hybrid filter configuration minimizing active filter size. Annual IEEE Power Electronics Specialists Conference, 400-405 (1999)
  18. Herman, L., Papic, I., Blazic, B.: A proportional-resonant current controller for selective harmonic compensation in a hybrid active power filter. IEEE Trans. Power Delivery 29(5), 2055-2065 (2014) https://doi.org/10.1109/TPWRD.2014.2344770
  19. Zhao, G., Liu, J., Yang, X., Wang, Z.: Analysis and specification of DC side voltage in parallel active power filter regarding compensation characteristics of generators, IEEE Power Electronics Specialists Conference, 3495-3499 (2008)
  20. Luo, A., Peng, S., Wu, C., Wu, J., Shuai, Z.: Power electronic hybrid system for load balancing compensation and frequency-selective harmonic suppression. IEEE Trans. Industr. Electron. 59(2), 723-732 (2012) https://doi.org/10.1109/TIE.2011.2161066
  21. Shuai, Z., Luo, A., Zhu, W., Fan, R., Zhou, K.: Study on a novel hybrid active power filter applied to a high-voltage grid. IEEE Trans. Power Deliv. 24(4), 2344-2352 (2009) https://doi.org/10.1109/TPWRD.2009.2027506
  22. Kumar, R., Bansal, H.O.: Shunt active power filter: current status of control techniques and its integration to renewable energy sources. Sustain. Cities Soc. 42, 574-592 (2018) https://doi.org/10.1016/j.scs.2018.07.002
  23. Rahmani, S., Hamadi, A., Al-Haddad, K., Dessaint, L.A.: A combination of shunt hybrid power filter and thyristor-controlled reactor for power quality. IEEE Trans. Industr. Electron. 61(5), 2152-2164 (2014) https://doi.org/10.1109/TIE.2013.2272271
  24. Lu, W., Li, C.: Decoupling control and zero dynamics stabilization for shunt hybrid active power filter. J. Cent. South Univ. 21(5), 1946-1955 (2014) https://doi.org/10.1007/s11771-014-2141-y
  25. Tarkiainen, A., Pollanen, R., Niemela, M., Pyrhonen, J.: DC-link voltage effects on properties of a shunt active filter. IEEE Annual Power Electronics Specialists Conference, 3169-3175 (2004)
  26. Srianthumrong, S., Akagi, H.: Medium-voltage transformerless ac/dc power conversion system consisting of a diode rectifier and a shunt hybrid filter. IEEE Trans. Ind. Appl. 39(3), 874-882 (2003) https://doi.org/10.1109/TIA.2003.811787
  27. Sharma, S., Verma, V., Behera, R.K.: Real-time implementation of shunt active power filter with reduced sensors. IEEE Trans. Ind. Appl. 56(2), 1850-1861 (2020) https://doi.org/10.1109/TIA.2019.2957734
  28. Luo, Z., Liu, Y., Li, S., Luo, Q.: Selective harmonic active tuning control method for hybrid active power filters. J. Power Electron. 21(6), 932-940 (2021) https://doi.org/10.1007/s43236-021-00241-9
  29. Buyuk, M., Tan, A., Tumay, M.: Resonance suppression of LCL filter for shunt active power filter via active damper. Int. J. Electr. Power Energy Syst. 134, 107389 (2022)