DOI QR코드

DOI QR Code

PSC-PWM modulated MPC for cascaded H-bridge power supplies

  • Bichen Yan (School of Electrical Engineering and Automation, Hefei University of Technology) ;
  • Haihong Huang (School of Electrical Engineering and Automation, Hefei University of Technology) ;
  • Haixin Wang (School of Electrical Engineering and Automation, Hefei University of Technology)
  • Received : 2022.08.02
  • Accepted : 2022.12.07
  • Published : 2023.05.20

Abstract

In the high-power applications of cascaded H-bridge (CHB) converters, when considering the limitations of the switching characteristics of the power device, the phase-shifted carrier's pulse width modulation (PSC-PWM) is used to increase the equivalent switching frequency to improve the output quality. However, interleaved carriers make the CHB output characteristics change. Thus, the optimal performance of the traditional fxed switching frequency model predictive control (MPC) using synchronous carrier modulation is no longer applicable. Moreover, it is difficult for the traditional state-space predictive model to quickly eliminate the prediction error caused by a model mismatch in the transient response process. Therefore, parameter mismatch under high uncertainties leads to a signifcant decrease in the transient optimization performance. In this study, a PSC-PWM modulated MPC is proposed to replace the fixed switching frequency with PSC-PWM and to suppress the parameter mismatching in the predictive model by an adaptive observer. The CHB output voltage is regarded as a whole based on the voltage-second balanced rule within an equivalent switching period to use the adaptive observer. The CHB optimal vector duration calculated by the optimization strategy at each sampling time is implemented by the PSC-PWM within an associated H-bridge carrier period. Excellent dynamic and transient performances of the reference tracking can be obtained by the proposed method at similar carrier frequencies. Finally, the tracking performances are verified by experiments conducted on a 5L-CHB.

Keywords

Acknowledgement

National Natural Science Foundation of China, 11275056

References

  1. Tommasi, G., Mele, A., Luo, Z. P., Pironti, A., Xiao, B.J.: On plasma vertical stabilization at EAST tokamak. In: Proceedings of 2017 IEEE Conference on Control Technology and Applications, 511-516 (2017).
  2. Huang, H., Yan, T., Wang, H.: Application of a current and voltage mixed control mode for the new fast control power supply at EAST. Plasma Sci. Technol 16(4), 420-423 (2014) https://doi.org/10.1088/1009-0630/16/4/22
  3. Zheng, L., Kandula, R.P., Divan, D.: Robust predictive control for modular solid-state transformer with reduced DC link and parameter mismatch. IEEE Trans. Power Electron. 36(12), 14295-14311 (2021) https://doi.org/10.1109/TPEL.2021.3085679
  4. Zhang, Y., Yin, Z., Li, W., Liu, J., Zhang, Y.: Adaptive slidingmode-based speed control in finite control set model predictive torque control for induction motors. IEEE Trans. Power Electron. 36(7), 8076-8087 (2021) https://doi.org/10.1109/TPEL.2020.3042181
  5. Carlet, P.G., Favato, A., Bolognani, S., Dorfe, F.: Data-driven continuous-set predictive current control for synchronous motor drives. IEEE Trans. Power Electron. 37(6), 6637-6646
  6. Toso, F., Favato, A., Torchio, R., Alotto, P., Bolognani, S.: Continuous control set model predictive current control of a microgrid-connected PWM inverter. IEEE Trans. Power Syst. 36(1), 415-425 (2021) https://doi.org/10.1109/TPWRS.2020.3006237
  7. Song, Z., Ma, X., Zhang, R.: Enhanced finite-control-set model predictive flux control of permanent magnet synchronous machines with minimum torque ripples. IEEE Trans. Ind. Electron. 68(9), 7804-7813 (2021) https://doi.org/10.1109/TIE.2020.3018051
  8. Guzman, R., Garcia, L., de Vicuna, A., Camacho, J.M., Rey, J.M.: Receding-horizon model-predictive control for a three-phase VSI with an LCL filter. IEEE Trans. Ind. Electron. 66(9), 6671-6680 (2019) https://doi.org/10.1109/TIE.2018.2877094
  9. Gong, C., Yihua, H., Ma, M., Yan, L., Liu, J., Wen, H.: Accurate FCS model predictive current control technique for surfacemounted PMSMs at low control frequency. IEEE Trans. Power Electron. 35(6), 5567-5572 (2020)
  10. Baier, C.R., Ramirez, R.O., Marciel, E.I., Hernandez, J.C., Melin, P.E., Espinosa, E.E.: FCS-MPC without steady-state error applied to a grid-connected cascaded H-bridge multilevel inverter. IEEE Trans. Power Electron. 36(10), 11785-11799 (2021) https://doi.org/10.1109/TPEL.2021.3065003
  11. Bin, Y., Song, W., Li, J., Li, B., Saeed, M.S.R.: Improved fnite control set model predictive current control for fve-phase VSIs. IEEE Trans. Power Electron. 36(6), 7038-7048 (2021) https://doi.org/10.1109/TPEL.2020.3034756
  12. Gao, N., Zhang, B., Weimin, W., Blaabjerg, F.: Finite control set model predictive control integrated with disturbance observer for battery energy storage power conversion system. J. Power Electron. 21(2), 342-353 (2021) https://doi.org/10.1007/s43236-020-00197-2
  13. Yang, X., Wang, K., Kim, J., Park, K.-B.: Artifcial neural network-based FCS-MPC for three-level inverters. J. Power Electron. 22, 2158
  14. Zhang, Y., Xie, W., Li, Z., Zhang, Y.: Model predictive direct power control of a PWM rectifier with duty cycle optimization. IEEE Trans. Power Electron. 28(11), 5343-5351 (2013) https://doi.org/10.1109/TPEL.2013.2243846
  15. Mahmoudi, H., Aleenejad, M., Ahmadi, R.: Modulated model predictive control of modular multilevel converters in VSC-HVDC systems. IEEE Trans. Power Del. 33(5), 2115-2124 (2018) https://doi.org/10.1109/TPWRD.2017.2727478
  16. Ma, F., He, Z., Qianming, X., Luo, A., Zhou, L., Li, M.: Multilevel power conditioner and its model predictive control for railway traction system. IEEE Trans. Ind. Electron. 63(11), 7275-7285 (2016) https://doi.org/10.1109/TIE.2016.2563379
  17. Judewicz, M.G., Gonzalez, S.A., Echeverria, N.I., Fischer, J.R., Carrica, D.O.: Generalized predictive current control (GPCC) for grid-tie three-phase inverters. IEEE Trans. Ind. Electron. 63(7), 4475-4484 (2016) https://doi.org/10.1109/TIE.2015.2508934
  18. Alkorta, P., Barambones, O., Cortajarena, J.A., Zubizarrreta, A.: Efcient multivariable generalized predictive control for sensorless induction motor drives. IEEE Trans. Ind. Electron. 61(9), 5126-5134 (2014) https://doi.org/10.1109/TIE.2013.2281172
  19. Zhang, X., Shi, T., Wang, Z., Geng, Q., Xia, C.: Generalized predictive contour control of the biaxial motion system. IEEE Trans. Ind. Electron. 65(11), 8488-8497 (2018) https://doi.org/10.1109/TIE.2018.2808899
  20. Aguilera, R. P., Acuna, P., Su, X., Lezana, P., Mcgrath, B.: Sequential phase-shifted model predictive control for multicell power converters. In: Proceedings of 2017 IEEE Southern Power Electron. Conference, pp 1-6, (2017).
  21. Zhou, D., Yang, S., Tang, Y.: Model-predictive current control of modular multilevel converters with phase-shifted pulsewidth modulation. IEEE Trans. Ind. Electron. 66(6), 4368-4378 (2019) https://doi.org/10.1109/TIE.2018.2863181
  22. Cuzmar, R.H., Pereda, J., Aguilera, R.P.: Phase-shifted model predictive control to achieve power balance of CHB converters for large-scale photovoltaic integration. IEEE Trans. Ind. Electron. 68(10), 9619-9629 (2021) https://doi.org/10.1109/TIE.2020.3026299
  23. Gersnoviez, A., Brox, M., Baturone, I.: High-speed and low-cost implementation of explicit model predictive controllers. IEEE Trans. Control Syst. Technol. 27(2), 647-662 (2019) https://doi.org/10.1109/TCST.2017.2775187
  24. Jing Chen, Y., Chen, L.T., Peng, L., Kang, Y.: A backpropagation neural network-based explicit model predictive control for DC-DC converters with high switching frequency. IEEE J. Emerg. Sel. Topics Power Electron. 8(3), 2124-2142 (2020) https://doi.org/10.1109/JESTPE.2020.2968475
  25. Yan, B., Huang, H., Wang, H.: Robust phase-shifted model predictive control for cascaded H-bridge power supplies using linear matrix inequality. J. Power Electron. 22, 1496-1507 (2022)  https://doi.org/10.1007/s43236-022-00459-1