DOI QR코드

DOI QR Code

Reactive Black Removal by using Electrocoagulation Techniques: An Response Surface Methodology Optimization and Genetic Algorithm Modelling Approach

  • Manikandan S. (Department of Civil Engineering, Coimbatore Institute of Technology) ;
  • Saraswathi R. (Department of Civil Engineering, Coimbatore Institute of Technology)
  • 투고 : 2022.11.01
  • 심사 : 2022.12.15
  • 발행 : 2023.05.28

초록

The dye wastewater discharge from the textile industries mainly affects the aquatic environment. Hence, the treatment of this wastewater is essential for a pollutant-free environment. The purpose of this research is to optimize the dye removal efficiency for process influencing independent variables such as pH, electrolysis time (ET), and current density (CD) by using Box-Behnken design (BBD) optimization and Genetic Algorithm (GA) modelling. The electrocoagulation treatment technique was used to treat the synthetically prepared Reactive Black dye solution under batch mode potentiometric operations. The percentage of error for the BBD optimization was significantly greater than for the GA modelling results. The optimum factors determined by GA modelling were CD-59.11 mA/cm2, ET-24.17 minutes, and pH-8.4. At this moment, the experimental and predicted dye removal efficiencies were found to be 96.25% and 98.26%, respectively. The most and least predominant factors found by the beta coefficient were ET and pH respectively. The outcome of this research shows GA modeling is a better tool for predicting dye removal efficiencies as well as process influencing factors.

키워드

참고문헌

  1. P. S. Kumar and A. Saravanan, Sustainable wastewater treatments in textile sector, S. S. Muthu (ed.), Sustainable Fibres and Textiles, Elsevier, 2017, 323-346. 
  2. N. M. Mahmoodi and A. Dalvand, Desalin. Water Treat., 2013, 51(31-33), 5959-5964.  https://doi.org/10.1080/19443994.2013.791769
  3. V. Khandegar and A. K. Saroha, J. Hazard. Toxic Radioact. Waste, 2014, 18(1), 38-44.  https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000194
  4. N. M. A. Ghalwa, A. M. Saqer, and N. B. Farhat, J. Chem. Eng. Process Technol., 2016, 7, 269. 
  5. T.-H. Kim, C. Park, E.-B. Shin, and S. Kim, Desalination, 2002, 150(2), 165-175.  https://doi.org/10.1016/S0011-9164(02)00941-4
  6. M. Y. A. Mollah, P. Morkovsky, J. A. G. Gomes, M. Kesmez, J. Parga, and D. L. Cocke, J. Hazard. Mater., 2004, 114(1-3), 199-210.  https://doi.org/10.1016/j.jhazmat.2004.08.009
  7. V. K. Sandhwar and B. Prasad, Korean J. Chem. Eng., 2018, 35(4), 909-921.  https://doi.org/10.1007/s11814-017-0336-2
  8. S. Y. Guvenc, H. S. Erkan, G. Varank, M. S. Bilgili, and G. O. Engin, Water Sci. Technol., 2017, 76(7-8), 2015-2031.  https://doi.org/10.2166/wst.2017.327
  9. G. Varank, S. Yazici Guvenc, G. Gurbuz, and G. Onkal Engin, Desalin. Water Treat., 2016, 57(53), 25460-25473.  https://doi.org/10.1080/19443994.2016.1157042
  10. N. Daneshvar, H. Ashassi-Sorkhabi, and A. Tizpar, Sep. Purif. Technol., 2003, 31(2), 153-162.  https://doi.org/10.1016/S1383-5866(02)00178-8
  11. A. Salahi, I. Noshadi, R. Badrnezhad, B. Kanjilal, and T. Mohammadi, J. Environ. Chem. Eng., 2013, 1(3), 218-225.  https://doi.org/10.1016/j.jece.2013.04.021
  12. S. L. C. Ferreira, R. E. Bruns, H. S. Ferreira, G. D. Matos, J. M. David, G. C. Brandao, E. G. P. da Silva, L. A. Portugal, P. S. dos Reis, A. S. Souza, and W. N. L. dos Santos, Anal. Chim. Acta, 2007, 597(2), 179-186.  https://doi.org/10.1016/j.aca.2007.07.011
  13. M. Rajasimman, R. Sangeetha, and P. Karthik, Chem. Eng. J., 2009, 150(2-3), 275-279.  https://doi.org/10.1016/j.cej.2008.12.026
  14. N. K. Nath and K. Mitra, Mater. Manuf. Process., 2005, 20(3), 335-349.  https://doi.org/10.1081/AMP-200053418
  15. H. Karimi and M. Ghaedi, J. Ind. Eng. Chem., 2014, 20(4), 2471-2476.  https://doi.org/10.1016/j.jiec.2013.10.028
  16. D. M. D'Addona and R. Teti, Procedia CIRP, 2013, 7, 323-328.  https://doi.org/10.1016/j.procir.2013.05.055
  17. A. M. Joglekar and A. T. May, Product excellence through experimental design, E. Graf and I. Saguy (eds.), Food product and development: From concept to the marketplace, Springer Science & Business Media, Berlin, Germany, 1987, 211-230. 
  18. U. T. Un, A. S. Koparal, and U. B. Ogutveren, J. Environ. Manage., 2009, 90(1), 428-433.  https://doi.org/10.1016/j.jenvman.2007.11.007
  19. A. Izadi, M. Hosseini, G. Najafpour Darzi, G. Nabi Bidhendi, and F. Pajoum Shariati, J. Environ. Health Sci. Engineer., 2018, 16, 257-264.  https://doi.org/10.1007/s40201-018-0314-6
  20. A. H. Essadki, M. Bennajah, B. Gourich, C. Vial, M. Azzi, and H. Delmas, Chem. Eng. Process. Process Intensif., 2008, 47(8), 1211-1223.  https://doi.org/10.1016/j.cep.2007.03.013
  21. U. T. Un and E. Ozel, Sep. Purif. Technol., 2013, 120, 386-391.  https://doi.org/10.1016/j.seppur.2013.09.031
  22. S. Zhao, G. Huang, G. Cheng, Y. Wang, and H. Fu, Desalination, 2014, 344, 454-462.  https://doi.org/10.1016/j.desal.2014.04.014
  23. A. K. Prajapati, P. K. Chaudhari, D. Pal, A. Chandrakar, and R. Choudhary, J. Water Process Eng., 2016, 11, 1-7.  https://doi.org/10.1016/j.jwpe.2016.03.008
  24. N. Daneshvar, A. R. Khataee, A. R. Amani Ghadim, and M. H. Rasoulifard, J. Hazard. Mater., 2007, 148(3), 566-572.  https://doi.org/10.1016/j.jhazmat.2007.03.028
  25. A. J. G. Gomes, D. O. Atambo, K. K. Das, D. L. Cocke, and K. P. Das, J. Environ. Chem. Eng., 2018, 6(5), 6028-6036.  https://doi.org/10.1016/j.jece.2018.09.039
  26. S. Adamovic, M. Prica, B. Dalmacija, S. Rapajic, D. Novakovic, Z. Pavlovic, and S. Maletic, Arab. J. Chem., 2015, 9(1), 152-162. https://doi.org/10.1016/j.arabjc.2015.03.018
  27. R. Cossu, A. M. Polcaro, M. C. Lavagnolo, M. Mascia, S. Palmas, and F. Renoldi, Environ. Sci. Technol., 1998, 32(22), 3570-3573.  https://doi.org/10.1021/es971094o
  28. V. A. Sakkas, M. A. Islam, C. Stalikas, and T. A. Albanis, J. Hazard. Mater., 2010, 175(1-3), 33-44.  https://doi.org/10.1016/j.jhazmat.2009.10.050
  29. S. Parinam, M. Kumar, N. Kumari, V. Karar, and A. L. Sharma, Optik, 2019, 182, 382-392. https://doi.org/10.1016/j.ijleo.2018.12.189