DOI QR코드

DOI QR Code

The Role of Vanadium Complexes with Glyme Ligands in Suppressing Vanadium Crossover for Vanadium Redox Flow Batteries

  • Jungho Lee (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Jingyu Park (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Kwang-Ho Ha (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Hyeonseok Moon (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Eun Ji Joo (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University) ;
  • Kyu Tae Lee (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
  • 투고 : 2022.11.07
  • 심사 : 2022.12.09
  • 발행 : 2023.05.28

초록

Vanadium redox flow batteries (VRFBs) have been considered one of promising power sources for large scale energy storage systems (ESS) because of their excellent cycle performance and good safety. However, VRFBs still have a few challenging issues, such as poor Coulombic efficiency due to vanadium crossover between catholyte and anolyte, although recent efforts have shown promise in electrochemical performance. Herein, the vanadium complexes with various glyme ligands have been examined as active materials to suppress vanadium crossover between catholyte and anolyte, thus improving the Coulombic efficiency of VRFBs. The conventional Nafion membrane has a channel size of ca. 10 Å, whereas vanadium cation species are small compared to the Nafion membrane channel. For this reason, vanadium cations can permeate through the Nafion membrane, resulting in significant vanadium crossover during cycling, although the Nafion membrane is a kind of ion-selective membrane. In this regard, various glyme additives, such as 1,2-dimethoxyethane (monoglyme), diethylene glycol dimethyl ether (diglyme), and tetraethylene glycol dimethyl ether (tetraglyme) have been examined as complexing agents for vanadium cations to increase the size of vanadium-ligand complexes in electrolytes. Since the size of vanadium-glyme complexes is proportional to the chain length of glymes, the vanadium permeability of the Nafion membrane decreases with increasing the chain length of glymes. As a result, the vanadium complexes with tetraglyme shows the excellent electrochemical performance of VRFBs, such as stable capacity retention (90.4% after 100 cycles) and high Coulombic efficiency (98.2% over 100 cycles).

키워드

과제정보

This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020M3H4A1A03 082971, NRF-2022M3H4A6A01037200, and NRF-2018R1A5A1024127).

참고문헌

  1. D. Larcher and J. M. Tarascon, Nat. Chem., 2015, 7, 19-29.  https://doi.org/10.1038/nchem.2085
  2. M. Park, J. Ryu, W. Wang, and J. Cho, Nat. Rev. Mater., 2017, 2, 16080. 
  3. H. S. Kim, T. Yoon, J. Jang, J. Mun, H. Park, J. H. Ryu, and S. M. Oh, J. Power Sources, 2015, 283, 300-304.  https://doi.org/10.1016/j.jpowsour.2015.02.083
  4. H. Kim, S. Hwang, J. Mun, H. Park, J. H. Ryu, and S. M. Oh, Electrochim. Acta, 2019, 308, 227-230.  https://doi.org/10.1016/j.electacta.2019.04.027
  5. D. Chao, W. Zhou, F. Xie, C. Ye, H. Li, M. Jaroniec, and S.-Z. Qiao, Sci. Adv., 2020, 6, eaba4098. 
  6. M. Skyllas-Kazacos, J. Electrochem. Soc., 2022, 169, 070513. 
  7. J.-N. Lee, E. Do, Y. Kim, J.-S. Yu, and K. J. Kim, Sci. Rep., 2021, 11, 4508. 
  8. T. H. Noh, M. Y. Kim, D. H. Kim, S. H. Yang, J. H. Lee, H. S. Park, H. S. Noh, M. S. Lee, and H. S. Kim, J. Electrochem. Sci. Technol., 2017, 8(2), 155-161.  https://doi.org/10.33961/JECST.2017.8.2.155
  9. C. Choi, S. Kim, R. Kim, Y. Choi, S. Kim, H.-Y. Jung, J. H. Yang, and H.-T. Kim, Renew. Sust. Energ. Rev., 2017, 69, 263-274. 
  10. D. Zhang, Z. Xu, X. Zhang, L. Zhao, Y. Zhao, S. Wang, W. Liu, X. Che, J. Yang, J. Liu, and C. Yan, ACS Appl. Mater. Interfaces, 2021, 13(3), 4051-4061.  https://doi.org/10.1021/acsami.0c20847
  11. T. Mu, W. Tang, N. Shi, G. Wang, T. Wang, T. Wang, and J. Yang, J. Membr. Sci., 2022, 659, 120793. 
  12. G. Kim, Y. Kim, T. Yim, and K. Kwon, J. Ind. Eng. Chem., 2021, 99, 326-333.  https://doi.org/10.1016/j.jiec.2021.04.043
  13. Y. Shi, C. Eze, B. Xiong, W. He, H. Zhang, T. M. Lim, A. Ukil, and J. Zhao, Appl. Energy, 2019, 238, 202-224.  https://doi.org/10.1016/j.apenergy.2018.12.087
  14. Z. Jiang, K. Klyukin, K. Miller, and V. Alexandrov, J. Phys. Chem. B, 2019, 123(18), 3976-3983.  https://doi.org/10.1021/acs.jpcb.8b10980
  15. S. Yoon, E. Lee, S. J. Yoon, D. M. Yu, Y. J. Kim, Y. T. Hong, and S. So, ACS Appl. Energy Mater., 2021, 4(5), 4473-4481.  https://doi.org/10.1021/acsaem.1c00097
  16. X. Z. Yuan, C. J. Song, A. Platt, N. N. Zhao, H. J. Wang, H. Li, K. Faith, and D. Jang, Int. J. Energy Res., 2019, 43(13), 6599-6638. 
  17. K. Oh, M. Moazzam, G. Gwak, and H. Ju, Electrochim. Acta, 2019, 297, 101-111.  https://doi.org/10.1016/j.electacta.2018.11.151
  18. G. Palanisamy, T. Sadhasivam, W. S. Park, S. T. Bae, S. H. Roh, and H. Y. Jung, ACS Sustain. Chem. Eng., 2020, 8(4), 2040-2051.  https://doi.org/10.1021/acssuschemeng.9b06631
  19. J. Q. Kim, S. So, H.-T. Kim, and S. Q. Choi, ACS Energy Lett., 2021, 6(1), 184-192.  https://doi.org/10.1021/acsenergylett.0c02089
  20. H. J. Choi, C. Youn, S. C. Kim, D. Jeong, S. N. Lim, D. R. Chang, J. W. Bae, and J. Park, Microporous Mesoporous Mater., 2022, 341, 112054. 
  21. Q. Luo, L. Li, W. Wang, Z. Nie, X. Wei, B. Li, B. Chen, Z. Yang, and V. Sprenkle, ChemSusChem, 2013, 6(2), 268-274.  https://doi.org/10.1002/cssc.201200730
  22. Y. H. Wan, J. Sun, Q. P. Jian, X. Z. Fan, and T. S. Zhao, J. Mater. Chem. A, 2022, 10, 13021-13030.  https://doi.org/10.1039/D2TA01746F
  23. M. A. Aziz, D. Han, and S. Shanmugam, ACS Sustain. Chem. Eng., 2021, 9(33), 11041-11051.  https://doi.org/10.1021/acssuschemeng.1c02466
  24. D. Lu, L. L. Wen, F. Nie, and L. X. Xue, RSC Adv., 2016, 6, 6029-6037.  https://doi.org/10.1039/C5RA25372A
  25. J.-K. Jang, T.-H. Kim, S. J. Yoon, J. Y. Lee, J.-C. Lee, and Y. T. Hong, J. Mater. Chem. A, 2016, 4, 14342-14355.  https://doi.org/10.1039/C6TA05080H
  26. S. Maurya, S. H. Shin, J. Y. Lee, Y. Kim, and S. H. Moon, RSC Adv., 2016, 6, 5198-5204.  https://doi.org/10.1039/C5RA26244E
  27. Y. Ahn and D. Kim, J. Ind. Eng. Chem., 2022, 110, 395-404.  https://doi.org/10.1016/j.jiec.2022.03.016
  28. T. Y. Son, K. S. Im, H. N. Jung and S. Y. Nam, Polymers, 2021, 13(16), 2827. 
  29. C. X. Wu, H. J. Bai, Y. Lv, Z. Q. Lv, Y. Xiang and S. F. Lu, Electrochim. Acta, 2017, 248, 454-461 (2017).  https://doi.org/10.1016/j.electacta.2017.07.122
  30. S. C. Park, T. H. Lee, G. H. Moon, B. S. Kim, J. M. Roh, Y. H. Cho, H. W. Kim, J. Jang, H. B. Park, and Y. S. Kang, ACS Appl. Energy Mater., 2019, 2(7), 4590-4596. 
  31. K. Park, D.-M. Kim, K.-H. Ha, B. Kwon, J. Lee, S. Jo, X. Ji, and K. T. Lee, Adv. Sci., 2022, 9(33), 2203443. 
  32. D. D. Lecce, V. Marangon, H.-G. Jung, Y. Tominaga, S. Greenbaum, and J. Hassoun, Green Chem., 2022, 24, 1021-1048.  https://doi.org/10.1039/D1GC03996B
  33. K. Fujii, M. Sogawa, N. Yoshimoto, and M. Morita, J. Phys. Chem. B, 2018, 122(37), 8712-8717.  https://doi.org/10.1021/acs.jpcb.8b05586
  34. S. E. Waters, C. M. Davis, J. R. Thurston, and M. P. Marshak, J. Am. Chem. Soc., 2022, 144(39),, 17753-17757.  https://doi.org/10.1021/jacs.2c07076
  35. S. Karmaker and T. K. Saha, Macromol. Biosci., 2008, 8(2), 171-176.  https://doi.org/10.1002/mabi.200700121
  36. N. O. Vitoriano, I. R. Larramendi, R. L. Sacci, I. Lozano, C. A. Bridges, O. Arcelus, M. Enterria, J. Carrasco, T. Rojo, and G. M. Veith, Energy Storage Mater., 2020, 29, 235-245.  https://doi.org/10.1016/j.ensm.2020.04.034
  37. L. H. B. Nguyen, T. Picard, N. Sergent, C. Raynaud, J.-S. Filhol, and M.-L. Doublet, Phys. Chem. Chem. Phys., 2021, 23, 26120-26129.  https://doi.org/10.1039/D1CP02939H
  38. X. Ge, C. A. MacRaild, S. M. Devine, C. O. Debono, G. Wang, P. J. Scammells, M. J. Scanlon, R. F. Anders, M. Foley, and R. S. Norton, J. Med. Chem., 2014, 57(15), 6419-6427.  https://doi.org/10.1021/jm500390g
  39. A. Swartjes, P. B. White, J. P. J. Bruekers, J. A. A. W. Elemans, and R. J. M. Nolte, Nat. Commun, 2022, 13, 1846. 
  40. N. H. Choi, S. Kwon, and H. Kim, J. Electrochem. Soc., 2013, 160, A973-A979.  https://doi.org/10.1149/2.145306jes
  41. R. Tan, A. Wang, R. Malpass-Evans, R. Williams, E. W. Zhao, T. Liu, C. Ye, X. Zhou, B. P. Darwich, Z. Fan, L. Turcani, E. Jackson, L. Chen, S. Y. Chong, T. Li, K. E. Jelfs, A. I. Cooper, N. P. Brandon, C. P. Grey, N. B. McKeown, and Q. Song, Nat. Mater., 2020, 19, 195-202.  https://doi.org/10.1038/s41563-019-0536-8
  42. C. Noh, Y. Chung, and Y. Kwon, J. Power Sources, 2020, 466, 228333. 
  43. B. Hu, C. DeBruler, Z. Rhodes, and T. L. Liu, J. Am. Chem. Soc., 2017, 139(3), 1207-1214.  https://doi.org/10.1021/jacs.6b10984
  44. Y. Yao, J. Lei, Y. Shi, F. Ai, and Y.-C. Lu, Nat. Energy, 2021, 6, 582-588.  https://doi.org/10.1038/s41560-020-00772-8
  45. T. Kim, W. Choi, H.-C. Shin, J.-Y. Choi, J. M. Kim, M.-S. Park, and W.-S. Yoon, J. Electrochem. Sci. Technol., 2020, 11(1), 14-25.  https://doi.org/10.33961/jecst.2019.00619
  46. M.-Y. Kim, B.-S. Kang, S.-J. Park, J. Lim, Y. Hong, J.-H. Han, and H.-S. Kim, J. Electrochem. Sci. Technol., 2021, 12(3), 330-338.  https://doi.org/10.33961/jecst.2021.00017
  47. S. Scally, W. Davison, and H. Zhang, Anal. Chim. Acta, 2006, 558(1-2), 222-229.  https://doi.org/10.1016/j.aca.2005.11.020
  48. T. Mandai, Y. Youn, and Y. Tateyama, Mater. Adv., 2021, 2, 6283-6296. https://doi.org/10.1039/D1MA00448D