DOI QR코드

DOI QR Code

The Effect of the Anode Thickness on Electrolyte Supported SOFCs

  • So Yeon Shin (Korea Electric Power Corp. Research Institute) ;
  • Dae-Kwang Lim (Korea Electric Power Corp. Research Institute) ;
  • Taehee Lee (Korea Electric Power Corp. Research Institute) ;
  • Sang-Yun Jeon (Korea Electric Power Corp. Research Institute)
  • 투고 : 2022.10.12
  • 심사 : 2022.12.01
  • 발행 : 2023.05.28

초록

Planer-type electrolyte substrates are often utilized for stack manufacturing of electrolyte-supported solid oxide fuel cells (ES-SOFCs) to fulfill necessary requirements such as a high mechanical strength and redox stability. This work did an electrochemical analysis of ES-SOFC with different NiO-YSZ anode thicknesses to find the optimal value for the high performance of the fuel cell. The cell resistivities were constant at anode thickness between 25-58 ㎛, but a thick anode (74 ㎛) caused a high electrode resistivity leading to a dramatic reduction in cell performance. A stability test was performed for 50 hours at 700℃, and the results showed a degradation rate of 0.3% per 1000 h by extrapolated fitting.

키워드

과제정보

This research was supported by the projects of the Korea Electric Power Corporation(R22EA08).

참고문헌

  1. J. T. S. Irvine and P. Connor (eds), Solid Oxide Fuels Cells: Facts and Figures, Springer, London, 2013.
  2. S. C. Singhal and K. Kendall (eds), High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design, and Applications, Elsevier Advanced Technology, New York, 2003.
  3. D. Fan, Y. Gao, F. Liu, T. Wei, Z. Ye, Yi. Ling, B. Chen, Y. Zhang, M. Ni, and D. Dong, J. Power Sources, 2021, 513, 230536.
  4. P. Qiu, S. Sun, X. Yang, F. Chen, C. Xiong, L. Jia, and J. Li, Int. J. Hydrog. Energy, 2021, 46(49), 25208-25224. https://doi.org/10.1016/j.ijhydene.2021.05.040
  5. N. Q. Minh, J. Am. Ceram. Soc., 1993, 76(3), 563-588. https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  6. H. N. Im, D. K. Lim, T. R. Lee, Y. S. Yoo, M. Choi, and S. J. Song, ECS Trans., 2015, 69(15), 25-31. https://doi.org/10.1149/06915.0025ecst
  7. M. Pihlatiea, T. Ramos, and A. Kaiser, J. Power Sources, 2009, 193(1), 322-320.
  8. A. Faes, A. Nakajoa, A. H. Wyser, D. Dubois, A. Brissec, S. Modena, and J. V. herle, J. Power sources, 2009, 193(1), 55-64. https://doi.org/10.1016/j.jpowsour.2008.12.118
  9. T. Klemenso and M. Mogensen, J. Am. Ceram. Soc., 2007, 90(11), 3582-3588. https://doi.org/10.1111/j.1551-2916.2007.01909.x
  10. Q. Ma, F. Tietz, A. Leonide, and E. Ivers-Tiffee, Electrochem. Comm., 2010, 12(10), 1326-1328. https://doi.org/10.1016/j.elecom.2010.07.011
  11. P. Tiwari and S. Basu, J. Solid State Electrochem., 2014, 18, 805-812. https://doi.org/10.1007/s10008-013-2326-6
  12. A. Faes, J. M. Fuerbringer, D. Mohamedi, A. HesslerWyser, G. Caboche, and J. V herle, J. Power Sources, 2011, 196(17), 7058-7069. https://doi.org/10.1016/j.jpowsour.2010.07.092
  13. P. K. Tiwari and S. Basu, ECS Trans., 2013, 57, 1545-1552. https://doi.org/10.1149/05701.1545ecst
  14. J. Laurencin, G. Delette, O. Sicardy, S. Rosini, and F. Lefebvre-Joud, J. Power Sources, 2010, 195(9), 2747-2753. https://doi.org/10.1016/j.jpowsour.2009.10.099
  15. A. Glauche, T. Betza, S. Mosch, N. Trofimenko, and M. Kusnezoff, ECS Trans., 2009, 25, 411-419. https://doi.org/10.1149/1.3205550
  16. M. A. Buccheri, A. Singh, and J. M. Hill, J. Power Sources, 2011, 196(3), 968-976. https://doi.org/10.1016/j.jpowsour.2010.08.073
  17. J. Kong, K. Sun, D. Zhou, N. Zhang, J. Mu, and J. Qiao, J. Power Sources, 2007, 166(2), 337-342. https://doi.org/10.1016/j.jpowsour.2006.12.042
  18. H. Moon, S. D. Kim, E. W. Park, S. H. Hyun, and H. S. Kim, Int. J. Hydrog. Energy, 2008, 33(11), 2826-2833. https://doi.org/10.1016/j.ijhydene.2008.03.024
  19. D. K. Lim, H. N. Im, and S. J. Song, Sci. Rep., 2016, 6, 18804.
  20. H. Schichlein, A. C. Muller, M. Voigts, A. Krugel, and E. Ivers-Tiffee, J. Appl. Electrochem., 2002, 32, 875-882. https://doi.org/10.1023/A:1020599525160
  21. A. L. Smirnova, K. R. Ellwood, and G. M. Crosbie, J. Electrochem. Soc., 2001, 148, A610-A615. https://doi.org/10.1149/1.1372212
  22. A. Leonide, V. Sonn, A. Weber, and E. Ivers-Tifee, J. Electrochem. Soc., 2007, 155, B36-B41. https://doi.org/10.1149/1.2801372
  23. Y. Zhang, H. Fan, and M. Han, J. Electrochem. Soc., 2018, 165, F756-F763. https://doi.org/10.1149/2.0171810jes
  24. C. Su, W. Wang, R. Ran, Z. Shao, M. O. Tadeb, and S. Liu, J. Mater. Chem. A, 2013, 1, 5620-5627. https://doi.org/10.1039/c3ta10538e