DOI QR코드

DOI QR Code

Improvement in Cycle Characteristics using PVP Based Direct Carbon Coating During High-Rate Charge and Discharge of Li[Ni0.93Co0.07]O2 Nanofibers: Application for Lithium Secondary Batteries

  • Hae In Kim (Department of Nano-Polymer Science & Engineering, Korea National University of Transportation) ;
  • Hyun Ju Jang (Department of Nano-Polymer Science & Engineering, Korea National University of Transportation) ;
  • Eui Jeong Park (Department of Nano-Polymer Science & Engineering, Korea National University of Transportation) ;
  • Thuy Thi Bich Tran (Department of Nano-Polymer Science & Engineering, Korea National University of Transportation) ;
  • Jong-Tae Son (Department of Nano-Polymer Science & Engineering, Korea National University of Transportation)
  • Received : 2022.05.20
  • Accepted : 2022.11.21
  • Published : 2023.05.28

Abstract

In this study, carbon-coated porous nanofibers were prepared via electrospinning and the performance of Li[Ni0.93Co0.07]O2 (NC) synthesized by electrospinning (E-NC) and co-precipitation (C-NC) was compared. E-NC had a discharge capacity of 206 mAh g-1 at 0.1C (17 mA/g), which is 10% higher than that of C-NC (189.2 mAh g-1). E-NC shows a high-rate performance of 118.32 mAh g-1 (61.7%) at 5C (850 mA/g), which is 50% higher than that of C-NC (78.22 mAh g-1 = 45.7%). Charge transfer of the carbon-coated porous nanofiber E-NC decreased by 35% compared to C-NC after 20 cycles as observed using electrochemical impedance spectroscopy. The results of this study show that the nanofiber structure with carbon coating shortens the Li-ion diffusion path, improves electrical conductivity, resulting in excellent rate performance.

Keywords

Acknowledgement

This study was supported by the Ministry of SMEs and Startups, Republic of Korea (S3045542); the Technology Innovation Program (20003747, Development of high-performance cathode material manufacturing technology through valuable metal upcycling from waste batteries and waste cathode material) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea); and the Korea Agency for Infrastructure Technology; the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (No.2021R1F1A1063481). This work was supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0020614, HRD Program for Industrial Innovation)

References

  1. H. Zhou, Energy Environ. Sci., 2013, 6, 2256-2256. https://doi.org/10.1039/c3ee90024j
  2. G. Zubi, R. Dufo-Lopez, M. Carvalho, and G. Pasaoglu, Renew. Sustain. Energy Rev., 2018, 89, 292-308. https://doi.org/10.1016/j.rser.2018.03.002
  3. C. Kurien and A. K. Srivastava, Integr. Environ. Assess. Manag., 2020, 16(2), 234-244. https://doi.org/10.1002/ieam.4206
  4. C. G. Hoehne and M. V. Chester, Energy, 2016, 115, 646-657. https://doi.org/10.1016/j.energy.2016.09.057
  5. D. B. Richardson, Renew. Sustain. Energy Rev., 2013, 19, 247-254. https://doi.org/10.1016/j.rser.2012.11.042
  6. M. Wood, J. Li, R. E. Ruther, Z. Du, E. C. Self, H. M. Meyer, C. Daniel, I. Belharouak, and D. L. Wood, Energy Storage Mater., 2020, 24, 188-197. https://doi.org/10.1016/j.ensm.2019.08.020
  7. S. Jaffe, Joule, 2017, 1(2), 225-228. https://doi.org/10.1016/j.joule.2017.09.021
  8. M. M. Thackeray, C. Wolverton, and E. D. Isaacs, Energy Environ. Sci., 2012, 5, 7854-7863. https://doi.org/10.1039/c2ee21892e
  9. S.-Y. Lee, K.-H. Choi, W.-S. Choi, Y. H. Kwon, H.-R. Jung, H.-C. Shin, and J. Y. Kim, Energy Environ. Sci., 2013, 6, 2414-2423. https://doi.org/10.1039/c3ee24260a
  10. T. Chen, Y. Jin, H. Lv, A. Yang, M. Liu, B. Chen, Y. Xie, and Q. Chen, Trans. Tianjin Univ., 2020, 26, 208-217. https://doi.org/10.1007/s12209-020-00236-w
  11. S. Zhao, Z. Guo, K. Yan, S. Wan, F. He, B. Sun, and G. Wang, Energy Storage Mater., 2021, 34, 716-734. https://doi.org/10.1016/j.ensm.2020.11.008
  12. J. U. Choi, N. Voronina, Y. Sun, and S. Myung, Adv. Energy Mater., 2020, 10(42), 2002027.
  13. K.-J. Park, J.-Y. Hwang, H.-H. Ryu, F. Maglia, S.-J. Kim, P. Lamp, C. S. Yoon, and Y.-K. Sun, ACS Energy Lett., 2019, 4, 1394-1400. https://doi.org/10.1021/acsenergylett.9b00733
  14. W. Luo, L. Liu, X. Li, J. Yu, and C. Fang, J. Alloys Compd., 2019, 810, 151786.
  15. X. Zhu, R. I. Revilla, J. Jaguemont, J. V. Mierlo, and A. Hubin, J. Phys. Chem. C, 2019, 123(50), 30046-30058. https://doi.org/10.1021/acs.jpcc.9b07767
  16. S. N. Karthick, S. Richard Prabhu Gnanakan, A. Subramania, and H.-J. Kim, J. Alloys Compd., 2010, 489(2), 674-677. https://doi.org/10.1016/j.jallcom.2009.09.147
  17. Z. Yan, S. Cai, X. Zhou, Y. Zhao, and L. Miao, J. Electrochem. Soc., 2012, 159, A894.
  18. S. Ni, X. Wang, G. Zhou, F. Yang, J. Wang, Q. Wang, and D. He, Mater. Lett., 2009, 63(30), 2701-2703. https://doi.org/10.1016/j.matlet.2009.09.047
  19. Z. Li, C. Wang, X. Chen, X. Wang, X. Li, Y. Yamauchi, X. Xu, J. Wang, C. Lin, D. Luo, X. Wang, and X. S. Zhao, Chem. Eng. J., 2020, 381, 122588.
  20. G.-Y. Liu, Y.-Y. Zhao, Y.-F. Tang, X.-D. Liu, M. Liu, and P.-J. Wu, Rare Met., 2020, 39, 1063-1071. https://doi.org/10.1007/s12598-020-01462-w
  21. C. Li, T. Shi, D. Li, H. Yoshitake, and H. Wang, RSC Adv., 2016, 6, 34715-34723. https://doi.org/10.1039/C5RA28021D
  22. J. W. Min, C. J. Yim, and W. B. Im, ACS Appl. Mater. Interfaces, 2013, 5(16), 7765-7769. https://doi.org/10.1021/am402484f
  23. B. Hong, X. He, H. Yi, and C. Hu, Materials, 2020, 13(23), 5528.
  24. H. Li and H. Zhou, Chem. Commun., 2012, 48, 1201-1217. https://doi.org/10.1039/C1CC14764A
  25. Y. Mizuno, E. Hosono, T. Saito, M. Okubo, D. NishioHamane, K. Oh-ishi, T. Kudo, and H. Zhou, J. Phys. Chem. C, 2012, 116(19), 10774-10780. https://doi.org/10.1021/jp2123482
  26. Q. Cao, H. P. Zhang, G. J. Wang, Q. Xia, Y. P. Wu, and H. Q. Wu, Electrochem. Commun., 2007, 9(5), 1228-1232. https://doi.org/10.1016/j.elecom.2007.01.017