DOI QR코드

DOI QR Code

Recent Developments of Polymer Electrolyte Membrane Fuel Cell Design

  • Wonchan Hwang (Center for Nanoparticle Research, Institute for Basic Science (IBS)) ;
  • Yung-Eun Sung (Center for Nanoparticle Research, Institute for Basic Science (IBS))
  • 투고 : 2022.10.06
  • 심사 : 2023.01.30
  • 발행 : 2023.05.28

초록

PEMFC has high potential for future development due to its high energy density, eco-friendliness, and high energy efficiency. When it becomes small, light and flexible, it can be competitive as an energy source for portable devices or flexible electronic devices. However, the use of hard and heavy materials for structural rigidity and uniform contact pressure transmission has become an obstacle to reducing the weight and flexibility of PEMFCs. This review intends to provide an example of the application of a new structure and material for lightweight and flexibility. As a lightweight PEMFC, a tubular design is presented and structural advantages through numerical modeling are explained. Manufacturing methods to realize the structural advantages and possibilities of tubular PEMFCs are discussed. In addition, the materials and manufacturing processes used to fabricate lightweight and flexible PEMFCs are described and factors affecting performance are analyzed. Strategies and structural improvements of light and flexible movements are discussed according to the component parts.

키워드

과제정보

This work was supported by Project IBS-R006-A2 in Korea.

참고문헌

  1. J. Jana, Y.-L. T. Ngo, J. S. Chung, and S. H. Hur, J. Electrochem. Sci. Technol., 2020, 11(3), 220-237. https://doi.org/10.33961/jecst.2020.00934
  2. L. Barreto, A. Makihira, and K. Riahi, Int. J. Hydrogen Energy, 2003, 28(3), 267-284. https://doi.org/10.1016/S0360-3199(02)00074-5
  3. I. Dincer, Int. J. Energy Res., 2007, 31(1), 29-55. https://doi.org/10.1002/er.1226
  4. Y. Leng, P. Ming, D. Yang, and C. Zhang, J. Power Sources, 2020, 451, 227783.
  5. Y. Huang, E.-L. Hsiang, M.-Y. Deng, and S.-T. Wu, Light: Sci. Appl., 2020, 9, 105.
  6. M. Hassanalian and A. Abdelkefi, Prog. Aerosp. Sci., 2017, 91, 99-131. https://doi.org/10.1016/j.paerosci.2017.04.003
  7. A. Nathan, A. Ahnood, M. T. Cole, L. Sungsik, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. GarciaGancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, C. Daping, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. J. Amaratunga, and W. I. Milne, Proc. IEEE, 2012, 100(Special Centennial Issues), 1486-1517.
  8. M. Stoppa and A. Chiolerio, Sensors, 2014, 14(7), 11957-11992. https://doi.org/10.3390/s140711957
  9. M. Park, H. Cha, Y. Lee, J. Hong, S. Y. Kim, and J. Cho, Adv. Mater., 2017, 29(11), 1605773.
  10. X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong, and G. Shen, Adv. Mater., 2014, 26(28), 4763-4782. https://doi.org/10.1002/adma.201400910
  11. W. K. Chee, H. N. Lim, Z. Zainal, N. M. Huang, I. Harrison, and Y. Andou, J. Phys. Chem. C, 2016, 120(8), 4153-4172. https://doi.org/10.1021/acs.jpcc.5b10187
  12. Y. Li, G. Xu, C. Cui, and Y. Li, Adv. Energy Mater., 2018, 8(7), 1701791.
  13. K. Keum, J. W. Kim, S. Y. Hong, J. G. Son, S.-S. Lee, and J. S. Ha, Adv. Mater., 2020, 32(51), e2002180.
  14. S.-H. Cho, M.-Y. Cha, M. Kim, Y.-J. Sohn, T.-H. Yang, and W.-Y. Lee, J. Electrochem. Sci. Technol., 2016, 7(1), 41-51. https://doi.org/10.33961/JECST.2016.7.1.41
  15. M. K. Cho, A. Lim, S. Y. Lee, H.-J. Kim, S. J. Yoo, Y.- E. Sung, H. S. Park, and J. H. Jang, J. Electrochem. Sci. Technol., 2017, 8(3), 183-196. https://doi.org/10.33961/JECST.2017.8.3.183
  16. P. Lin, P. Zhou, and C. W. Wu, J. Power Sources, 2009, 194(1), 381-390. https://doi.org/10.1016/j.jpowsour.2009.04.068
  17. K. Jayakumar, S. Pandiyan, N. Rajalakshmi, and K. S. Dhathathreyan, J. Power Sources, 2006, 161(1), 454-459. https://doi.org/10.1016/j.jpowsour.2006.04.128
  18. N. de las Heras, E. P. L. Roberts, R. Langton, and D. R. Hodgson, Energy Environ. Sci., 2009, 2(2), 206-214. https://doi.org/10.1039/B813231N
  19. D. Yang, Y. Hao, B. Li, P. Ming, and C. Zhang, Int. J. Hydrogen Energy, 2022, 47(16), 9680-9689. https://doi.org/10.1016/j.ijhydene.2022.01.024
  20. Hydrogen and Fuel Cell Technologies Office, Parts of a Fuel cell, U.S. Department of Energy, accessed 28 september, 2022. https://www.energy.gov/eere/fuelcells/ parts-fuel-cell
  21. J. F. Coursange, A. Hourri, and J. Hamelin, Fuel Cells, 2003, 3(1-2), 28-36. https://doi.org/10.1002/fuce.200331101
  22. M. A. R. S. Al-Baghdadi, Energy Convers. Manage., 2008, 49(11), 2986-2996. https://doi.org/10.1016/j.enconman.2008.06.018
  23. M. A. R. S. Al-Baghdadi, Renewable Energy, 2008, 33(6), 1334-1345. https://doi.org/10.1016/j.renene.2007.06.020
  24. J. M. Sierra, S. J. Figueroa-Ramirez, S. E. Diaz, J. Vargas, and P. J. Sebastian, Int. J. Hydrogen Energy, 2014, 39(29), 16694-16705. https://doi.org/10.1016/j.ijhydene.2014.04.078
  25. Z. Saghali and J. Mahmoudimehr, Int. J. Hydrogen Energy, 2017, 42(48), 28865-28882. https://doi.org/10.1016/j.ijhydene.2017.10.058
  26. A. Mohammadi-Ahmar, B. Osanloo, A. Solati, and J. Ghasemi, Energy Convers. Manage., 2016, 128, 238- 249. https://doi.org/10.1016/j.enconman.2016.09.074
  27. B. Osanloo, A. Mohammadi-Ahmar, and A. Solati, Int. J. Hydrogen Energy, 2016, 41(25), 10844-10853. https://doi.org/10.1016/j.ijhydene.2016.04.228
  28. K. I. Lee, S. W. Lee, M. S. Park, and C. N. Chu, Int. J. Hydrogen Energy, 2010, 35(21), 11844-11854. https://doi.org/10.1016/j.ijhydene.2010.08.105
  29. B. Bullecks, R. Rengaswamy, D. Bhattacharyya, and G. Campbell, Int. J. Hydrogen Energy, 2011, 36(1), 713- 719. https://doi.org/10.1016/j.ijhydene.2010.09.079
  30. S. R. Suseendiran, S. Pearn-Rowe, and R. Rengaswamy, Int. J. Hydrogen Energy, 2020, 45(17), 10549-10558. https://doi.org/10.1016/j.ijhydene.2019.09.113
  31. W. Hwang, S. Kim, C.-Y. Ahn, Y.-H. Cho, and Y.-E. Sung, ACS Energy Lett., 2021, 6(9), 3195-3202. https://doi.org/10.1021/acsenergylett.1c01460
  32. T. Ito, K. Kimura, and M. Kunimatsu, Electrochem. Commun., 2006, 8(6), 973-976. https://doi.org/10.1016/j.elecom.2006.03.044
  33. S. Tominaka, H. Nishizeko, J. Mizuno, and T. Osaka, Energy Environ. Sci., 2009, 2(10), 1074-1077. https://doi.org/10.1039/b915389f
  34. S. Tominaka, H. Nishizeko, S. Ohta, and T. Osaka, Energy Environ. Sci., 2009, 2(8), 849-852. https://doi.org/10.1039/b906216e
  35. I. Chang, M. H. Lee, J.-H. Lee, Y.-S. Kim, and S. W. Cha, Int. J. Precis. Eng. Manuf., 2013, 14(3), 501-504. https://doi.org/10.1007/s12541-013-0067-1
  36. T. Park, Y. S. Kang, S. Jang, S. W. Cha, M. Choi, and S. J. Yoo, NPG Asia Mater., 2017, 9, e384.
  37. I. Chang, T. Park, J. Lee, H. B. Lee, S. Ji, M. H. Lee, S. H. Ko, and S. W. Cha, Int. J. Hydrogen Energy, 2014, 39(14), 7422-7427. https://doi.org/10.1016/j.ijhydene.2014.03.017
  38. H. Yoo, O. Kwon, J. Kim, H. Cha, H. Kim, H. Choi, S. Jeong, Y. J. Lee, B. Kim, G. E. Jang, J.-S. Koh, G. Y. Cho, and T. Park, J. Power Sources, 2022, 532, 231273.
  39. I. Chang, T. Park, J. Lee, H. B. Lee, S. H. Ko, and S. W. Cha, Int. J. Hydrogen Energy, 2016, 41(14), 6013-6019. https://doi.org/10.1016/j.ijhydene.2016.02.087
  40. T. Park, I. Chang, J. H. Jung, H. B. Lee, S. H. Ko, R. O'Hayre, S. J. Yoo, and S. W. Cha, Energy, 2017, 134, 412-419. https://doi.org/10.1016/j.energy.2017.05.197
  41. T. Park, I. Chang, H. B. Lee, S. H. Ko, and S. W. Cha, Int. J. Hydrogen Energy, 2017, 42(3), 1884-1890. https://doi.org/10.1016/j.ijhydene.2016.08.022
  42. Y. S. Kang, T. Park, S. Jang, M. Choi, S. J. Yoo, and S. W. Cha, J. Ind. Eng. Chem., 2017, 47, 323-328. https://doi.org/10.1016/j.jiec.2016.11.048
  43. F. Ning, X. He, Y. Shen, H. Jin, Q. Li, D. Li, S. Li, Y Zhan, Y. Du, J. Jiang, H. Yang, and X. Zhou, ACS Nano, 2017, 11(6), 5982-5991. https://doi.org/10.1021/acsnano.7b01880
  44. Y. S. Kang, P. Won, S. H. Ko, T. Park, and S. J. Yoo, Energy, 2019, 172, 874-880. https://doi.org/10.1016/j.energy.2019.01.123
  45. J. Wei, F. Ning, C. Bai, T. Zhang, G. Lu, H. Wang, Y. Li, Y. Shen, X. Fu, Q. Li, H. Jin, and X. Zhou, J. Mater. Chem. A, 2020, 8(12), 5986-5994. https://doi.org/10.1039/C9TA13944C
  46. H. Wang, C. Bai, T. Zhang, J. Wei, Y. Li, F. Ning, Y. Shen, J. Wang, X. Zhang, H. Yang, Q. Li, and X. Zhou, ACS Appl. Mater. Interfaces, 2020, 12(4), 4473-4481.  https://doi.org/10.1021/acsami.9b18511