DOI QR코드

DOI QR Code

Predicting drying shrinkage of steel reinforced concrete columns with enclosed section steels

  • Jie Wu (College of Civil Engineering, Tongji University) ;
  • Xiao Wei (College of Civil Engineering, Tongji University) ;
  • Xiaoqun Luo (College of Civil Engineering, Tongji University)
  • 투고 : 2021.01.18
  • 심사 : 2023.05.10
  • 발행 : 2023.05.25

초록

Owing to the obstruction of section steel on the moisture diffusion in concrete, the existing shrinkage prediction models overestimate the time-dependent deformation of steel reinforced concrete (SRC) columns, particularly for the SRC columns with enclosed section steels. To solve this issue, this study deals with analytical and experimental studies on the drying shrinkage for this type of column. First, an effective method for predicting the drying shrinkage of concrete based on finite element model is introduced and two crucial parameters for simulation of humidity field are determined. Then, the drying shrinkage of SRC columns with enclosed section steels is investigated and two modified parameters, which depend on the ambient relative humidity and the ratio of section steel size to column size, are introduced to the B3 model. Finally, an experiment on the shrinkage deformation of SRC columns with enclosed section steels is conducted. Comparing the predicted results with the experimental ones, it demonstrates that the modified B3 model is quite reasonable.

키워드

과제정보

The research described in this paper was financially supported by National Natural Science Foundation of China (NSFC) (grant No. 51878475).

참고문헌

  1. ACI Committee 209 (2008), Guide for modeling and calculating shrinkage and creep in hardened concrete, ACI 209.2R-08, American Concrete Institute 
  2. Ahari, A.S., Forough, S.A., Khodaii, A. and Nejad, F.M. (2014), "Modeling the primary and secondary regions of creep curves for SBS-modified asphalt mixtures under dry and wet conditions", J. Mater. Civil Eng., 26(5), 904-911. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000857. 
  3. Akita, H., Fujiwara, T. and Ozaka, Y. (1997), "A practical procedure for the analysis of moisture transfer within concrete due to drying", Magazine Concrete Res., 49(179), 129-137. https://doi.org/10.1680/macr.1997.49.179.129. 
  4. Al-Deen, S. (2018), "Hydro-mechanical analysis of non-uniform shrinkage development and its effects on steel-concrete composite slabs", Steel Compos. Struct., 26(3), 303-314. https://doi.org/10.12989/scs.2018.26.3.303. 
  5. An, G.H., Cha, S.L. and Kim, J.K. (2018), "Modification of the long-term deformation models for steel reinforced concrete columns", Constr. Build. Mater., 189, 245-252. https://doi.org/10.1016/j.conbuildmat.2018.08.095. 
  6. An, G.H., Kwon, S.H. and Kim, J.K. (2015), "Effect of wide-flange-steel geometry on the long-term shortening of steel-reinforced concrete columns", Magazine Concrete Res., 67(23), 1242-1256. https://doi.org/10.1680/macr.14.00122. 
  7. Ayano, T. and Wittmann, F.H. (2002), "Drying, moisture distribution, and shrinkage of cement-based materials", Mater. Struct., 35(3), 134-140. https://doi.org/10.1007/BF02533581. 
  8. Bazant, Z.P. (2001), "Prediction of concrete creep and shrinkage: past, present and future", Nucl. Eng. Des., 203(1), 27-38. https://doi.org/10.1016/S0029-5493(00)00299-5. 
  9. Bazant, Z.P. and Baweja, S. (1995), "Justification and refinements of model B3 for concrete creep and shrinkage 2. updating and theoretical basis", Mater. Struct., 28(8), 488-495. https://doi.org/10.1007/BF02473171. 
  10. Bazant, Z.P. and Murphy, W.P. (1995), "Creep and shrinkage prediction model for analysis and design of concrete structures: model B3", Mater. Struct., 28, 357-365. https://doi.org/10.1007/BF02473152. 
  11. Bazant, Z.P. and Najjar, L.J. (1971), "Drying of concrete as a nonlinear diffusion problem", Cement Concrete Res., 1(5), 461-473. https://doi.org/10.1016/0008-8846(71)90054-8. 
  12. Bazant, Z.P. and Najjar, L.J. (1972), "Nonlinear water diffusion in nonsaturated concrete", Materiaux et Construction, 5(1), 3-20. https://doi.org/10.1007/BF02479073. 
  13. Bazant, Z.P. and Xi, Y. (1994), "Drying creep of concrete: constitutive model and new experiments separating its mechanisms", Mater. Struct., 27(1), 3-14. https://doi.org/10.1007/BF02472815. 
  14. Bazant, Z.P., Hubler, M.H. and Wendner, R. (2015), "RILEM draft recommendation: TC-242-MDC multidecade creep and shrinkage of concrete: material model and structural analysis", Mater. Struct., 48, 753-770. https://doi.org/10.1617/s11527-014-0485-2. 
  15. Bisschop, J. and van Mier, J.G.M. (2002), "Effect of aggregates on drying shrinkage microcracking in cement-based composites", Mater. Struct., 35(8), 453-461. https://doi.org/10.1007/BF02483132. 
  16. Bissonnette, B., Pierre, P. and Pigeon, M. (1999), "Influence of key parameters on drying shrinkage of cementitious materials", Cement Concrete Res., 29(10), 1655-1662. https://doi.org/10.1016/S0008-8846(99)00156-8. 
  17. Bo, Z.Z. and Jun, Z. (2006), "Experimental study on relationship between shrinkage strain and environmental humidity of concrete", J. Build. Mater., 6(6), 720-723. https://doi.org/10.1016/S1010-5182(06)60391-0. 
  18. Carette, J., Soleilhet, F., Benboudjema, F., Ma, X.Y., Nahas, G., Abahri, K., Darquennes, A. and Bennacer, R. (2020), "Identifying the mechanisms of concrete drying: An experimental-numerical approach", Constr. Build. Mater., 230, 117001. https://doi.org/10.1016/j.conbuildmat.2019.117001. 
  19. Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007), "An analytical-numerical procedure for cracking and time-dependent effects in continuous composite beams under service load", Steel Compos. Struct., 7(3), 219-240. https://doi.org/10.12989/scs.2007.7.3.219. 
  20. Chen, Z.P. and Liu, X. (2018), "Seismic behavior of steel reinforced concrete cross-shaped column under combined torsion", Steel Compos. Struct., 26(4), 407-420. https://doi.org/10.12989/scs.2018.26.4.407. 
  21. Cho, B., Park, D., Kim, J. and Hamasaki, H. (2017), "Study on the heat-moisture transfer in concrete under real environment", Constr. Build. Mater., 132, 124-129. https://doi.org/10.1016/j.conbuildmat.2016.11.121. 
  22. fib-International Federation for Structural Concrete (2010), Model Code for Concrete Structures 2010, Ernst&Sohn, Berlin.
  23. Fick, A. (1995), "On liquid diffusion", J. Membr. Sci., 100(1), 33-38. https://doi.org/10.1016/0376-7388(94)00230-V. 
  24. Gardner, N.J. and Lockman, M.J. (2001), "Design provisions for drying shrinkage and creep of normal-strength concrete", ACI Mater. J., 98(2), 159-167. https://doi.org/10.14359/10199. 
  25. Gayarre, F.L., Gonzalez, J.S., Perez, C.L.-C., Serrano Lopez, M.A., Ros, P.S. and Martinez-Barrera, G. (2019), "Shrinkage and creep in structural concrete with recycled brick aggregates", Constr. Build. Mater., 228, 116750. https://doi.org/10.1016/j.conbuildmat.2019.116750. 
  26. Jiang, W., Schutter, G.D. and Yuan, Y. (2014), "Degree of hydration based prediction of early age basic creep and creep recovery of blended concrete", Cement Concrete Compos., 48, 83-90. https://doi.org/10.1016/j.cemconcomp.2013.10.012. 
  27. Kim, J.K. and Lee, C.S. (1998), "Prediction of differential drying shrinkage in concrete", Cement Concrete Res., 28(7), 985-994. https://doi.org/10.1016/S0008-8846(98)00077-5. 
  28. Kim, J.K. and Lee, C.S. (1999), "Moisture diffusion of concrete considering self-desiccation at early ages", Cement Concrete Res., 29(12), 1921-1927. https://doi.org/10.1016/S0008-8846(99)00192-1. 
  29. Lahmar, N., Bouziadi, F., Boulekbache, B., Meziane, E.-H., Hamrat, M., Haddi, A. and Djelal, C. (2020), "Experimental and finite element analysis of shrinkage of concrete made with recycled coarse aggregates subjected to thermal loading", Constr. Build. Mater., 247, 118564. https://doi.org/10.1016/j.conbuildmat.2020.118564. 
  30. Liu, Z., Zhou, C., Xue, J. and Leon, R.T. (2020), "Experimental study on seismic performance of steel reinforced concrete T-shaped columns", Steel Compos. Struct., 36(3), 339-353. https://doi.org/10.12989/scs.2020.36.3.339. 
  31. Mirza, O. and Uy, B. (2010), "Finite element model for the long-term behaviour of composite steel-concrete push tests", Steel Compos. Struct., 10(1), 45-67. https://doi.org/10.12989/scs.2010.10.1.045. 
  32. Sakata, K. (1983), "A study on moisture diffusion in drying and drying shrinkage of concrete", Cement Concrete Res., 13(2), 216-224. https://doi.org/10.1016/0008-8846(83)90104-7. 
  33. Seol, H.C., Kwon, S.H., Yang, J.K., Kim, H.S. and Kim, J.K. (2008), "Effect of differential moisture distribution on the shortening of steel-reinforced concrete columns", Magazine Concrete Res., 60(5), 313-322. https://doi.org/10.1680/macr.2008.00018. 
  34. Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Prediction of the shrinkage behavior of recycled aggregate concrete: A review", Constr. Build. Mater., 77, 327-339. https://doi.org/10.1016/j.conbuildmat.2014.12.102. 
  35. Wu, L., Farzadnia, N., Shi, C., Zhang, Z. and Wang, H. (2017), "Autogenous shrinkage of high performance concrete: A review", Constr. Build. Mater., 149, 62-75. https://doi.org/10.1016/j.conbuildmat.2017.05.064. 
  36. Xi, Y., Bazant, Z.P., Molina, L. and Jennings, H.M. (1994), "Moisture diffusion in cementitious materials moisture capacity and diffusivity", Adv. Cement Based Mater., 1(6), 258-266. https://doi.org/10.1016/1065-7355(94)90034-5. 
  37. Yousefieh, N., Joshaghani, A., Hajibandeh, E. and Shekarchi, M. (2017), "Influence of fibers on drying shrinkage in restrained concrete", Constr. Build. Mater., 148, 833-845. https://doi.org/10.1016/j.conbuildmat.2017.05.093. 
  38. Zhan, Y., Liu, F., Ma, Z.J., Zhang, Z., Duan, Z. and Song, R. (2019), "Comparison of long-term behavior between prestressed concrete and corrugated steel web bridges", Steel Compos. Struct., 30(6), 535-550. https://doi.org/10.12989/scs.2019.30.6.535. 
  39. Zhang, J., Hou, D. and Han, Y. (2012), "Micromechanical modeling on autogenous and drying shrinkages of concrete", Constr. Build. Mater., 29, 230-240. https://doi.org/10.1016/j.conbuildmat.2011.09.022.