DOI QR코드

DOI QR Code

Static strengths of preloaded circular hollow section stub columns strengthened with carbon fiber reinforced polymer

  • Chen Wei (School of Mechatronic Engineering, Southwest Petroleum University) ;
  • Yongbo Shao (School of Civil Engineering and Geomatics, Southwest Petroleum University) ;
  • Mostafa Fahmi Hassanein (Department of Structural Engineering, Faculty of Engineering, Tanta University) ;
  • Chuannan Xiong (School of Civil Engineering and Geomatics, Southwest Petroleum University) ;
  • Hongmei Zhu (School of Mechatronic Engineering, Southwest Petroleum University)
  • 투고 : 2022.10.04
  • 심사 : 2023.04.25
  • 발행 : 2023.05.25

초록

To investigate the load bearing capacity of axially preloaded circular hollow section (CHS) stub columns strengthened by carbon fiber reinforced polymer (CFRP), theoretical analysis is carried out. The yield strength and the ultimate strength of a CFRP strengthened preloaded CHS stub column are determined at the yielding of the CHS tube and at the CFRP fracture, respectively. Theoretical models are proposed and corresponding equations for calculating the static strengths, including the yield strength and the ultimate strength, are presented. Through comparison with reported experimental results, the theoretical predictions on the static strengths are proved to be accurate. Through finite element (FE) analyses, parametric studies for 258 models of CFRP strengthened preloaded CHS stub columns are conducted by considering different values of tube diameter, tube thickness, CFRP layer and preloading level. The static strengths of the 258 models predicted from presented equations are proved to be in good agreement with FE simulations when the diameter-to-thickness ratio is less than 90ε2. The parametric study indicates that the diameter and the thickness of the steel tube have great effects on CFRP strengthening efficiency, and the recommended ranges of the diameter and the thickness are proposed.

키워드

과제정보

This work is supported by the Scientific Innovation Group for Youths of Sichuan Province under Grant No. 2019JDTD0017 of China, and such support is appreciated greatly by the authors.

참고문헌

  1. Aguilera, J. and Fam, A. (2013), "Retrofitting tubular steel T-joints subjected to axial compression in chord and brace members using bonded FRP plates or through-wall steel bolts", Eng. Struct., 48, 602-610. http://dx.doi.org/10.1016/j.engstruct.2012.09.018.
  2. Abu-Sena, A.B.B., Mohamed, S., Zaki, M.A. and Mohamed, D. (2019), "Behavior of hollow steel sections strengthened with CFRP", Constr. Build. Mater., 205, 306-320. https://doi.org/10.1016/j.conbuildmat.2019.01.237.
  3. Bambach, M.R., Jama, H.H. and Elchalakani, M. (2009), "Axial capacity and design of thin-walled steel SHS strengthened with CFRP", Thin Wall. Struct., 47, 1112-1121. https://doi.org/10.1016/j.tws.2008.10.006.
  4. Djerrad, A. (2019), "Experimental and FEM analysis of AFRP strengthened short and long steel tube under axial compression", Thin Wall. Struct., 139, 9-23. https://doi.org/10.1016/j.tws.2019.02.032.
  5. Eurocode3 (2005), Design of Steel Structures. Part 1-1: General Rules and Rules for Building, European Committee for Standardization, Brussels, Belgium.
  6. Elchalakani, M. (2014), "CFRP strengthening and rehabilitation of degraded steel welded RHS beams under combined bending and bearing", Thin Wall. Struct., 77, 86-108. https://doi.org/10.1016/j.tws.2013.12.002.
  7. Elchalakani, M. (2016), "Rehabilitation of corroded steel CHS under combined bending and bearing using CFRP", J. Constr. Steel Res., 125, 26-42. https://doi.org/10.1016/j.jcsr.2016.06.008.
  8. Feng, P. (2017), "Buckling behavior of CFRP-aluminum alloy hybrid tubes in axial compression", Eng. Struct., 132, 624-636. https://doi.org/10.1016/j.engstruct.2016.11.051.
  9. Ghaemdoust, M.R., Narmashiri, K. and Yousefi, O. (2016), "Structural behaviors of deficient steel SHS short columns strengthened using CFRP", Constr. Build. Mater., 126, 1002-1011. https://doi.org/10.1016/j.conbuildmat.2016.09.099.
  10. GB 51367 (2019), Standard for Design of Strengthening Steel Structure, China Standards Organization; Beijing, China.
  11. Haedir, J., Bambach, M.R. and Zhao, X.L. (2009), "Strength of circular hollow sections (CHS) tubular beams externally reinforced by carbon FRP sheets in pure bending", Thin Wall. Struct., 47, 1136-1147. https://doi:10.1016/j.tws.2008.10.017.
  12. Haedir, J. and Zhao, X.L. (2011), "Design of short CFRP-reinforced steel tubular columns", J. Constr. Steel Res., 67, 497-509. https://doi.org/10.1016/j.jcsr.2010.09.005.
  13. Huang, C., Chen, T. and Wang, X. (2017), "Compressive characteristics of damaged circular hollow section (CHS) steel columns repaired by CFRP or grout jacketing", Thin Wall. Struct., 119, 635-645. https://doi.org/10.1016/j.tws.2017.07.008.
  14. Kabir, M.H. (2016), "Experimental and numerical investigation of the behaviour of CFRP strengthened CHS beams subjected to bending", Eng. Struct., 113, 160-173. https://doi.org/10.1016/j.engstruct.2016.01.047.
  15. Keykha, A.H. (2017), "CFRP strengthening of steel columns subjected to eccentric compression loading", Steel Compos. Struct., 23(1), 087-094. https://doi.drg/10.12989/.2017.23.1.087.
  16. Lesani, M., Bahaari, M.R. and Shokrieh, M.M. (2013), "Numerical investigation of FRP-strengthened tubular T-joints under axial compressive loads", Compos. Struct., 100, 71-78. http://dx.doi.org/10.1016/j.compstruct.2012.12.020.
  17. Lesani, M., Bahaari, M.R. and Shokrieh, M.M. (2014), "Experimental investigation of FRP-strengthened tubular T-joints under axial compressive loads", Constr. Build. Mater., 53, 243-252. http://dx.doi.org/10.1016/j.conbuildmat.2013.11.097.
  18. Liang, J.F., Zhang, G.W., Wang, J.B. and Hu, M.H. (2019), "Mechanical behaviour of partially encased composite columns confined by CFRP under axial compression", Steel Compos. Struct., 31(2), 125-131. https://doi.org/10.12989/scs.2019.31.2.125.
  19. Mohamed, H.S., Shao, Y.B. and Chen, C. (2021), "Static strength of CFRP-strengthened tubular TT-joints containing initial local corrosion defect", Ocean Eng., 236, 109484. https://doi.org/10.1016/j.oceaneng.2021.109484.
  20. Nabati, A. and Ghanbari-Ghazijahani, T. (2020), "CFRP-reinforced circular steel tubes with cutout under axial loading", J. Constr. Steel Res., 164, 105775. https://doi.org/10.1016/j.jcsr.2019.105775.
  21. Nassiraei, H. and Rezadoost, P. (2020), "Stress concentration factors in tubular T/Y-joints strengthened with FRP subjected to compressive load in offshore structures", Int. J. Fatigue, 140, 105719. https://doi.org/10.1016/j.ijfatigue.2020.105719.
  22. Nassiraei, H. and Rezadoost, P. (2021a), "Stress concentration factors in tubular T/Y-connections reinforced with FRP under in-plane bending load", Marine Struct., 76, 102871. https://doi.org/10.1016/j.marstruc.2020.102871.
  23. Nassiraei, H. and Rezadoost, P. (2021b), "Parametric study and formula for SCFs of FRP-strengthened CHS T/Y-joints under out-of-plane bending load", Ocean Eng., 221, 108313. https://doi.org/10.1016/j.oceaneng.2020.108313.
  24. Nassiraei, H. and Rezadoost, P. (2021c), "SCFs in tubular X-joints retrofitted with FRP under out-of-plane bending moment", Marine Struct., 79, 103010. https://doi.org/10.1016/j.marstruc.2021.103010.
  25. Photiou, N.K., Hollaway, L.C. and Chryssanthopoulos, M.K. (2006), "Strengthening of an artificially degraded steel beam utilizing a carbon/glass composite system", Constr. Build. Mater., 20, 11-21. https://doi:10.1016/j.conbuildmat.2005.06.043.
  26. Prashob, P.S., Shashikala, A.P. and Somasundaran, T.P. (2019), "Characteristics of CFRP strengthened tubular joints subjected to different monotonic loadings", Steel Compos. Struct., 32(3), 361-372. https://doi.org/10.12989/scs.2019.32.3.361.
  27. Shaat, A. and Fam, A. (2006), "Axial loading tests on short and long hollow structural steel columns retrofitted using carbon fiber reinforced polymers", Canadian J. Civil Eng., 33, 458-470. https://doi.org/10.1139/l05-042.
  28. Sundarraja, M.C., Sriram, P. and Ganesh Prabhu, G. (2014), "Strengthening of hollow square sections under compression using FRP composites", Adv. Mater. Sci. Eng., 2014, 1-19. http://dx.doi.org/10.1155/2014/396597.
  29. Shahabi, R. and Narmashiri, K. (2018), "Effects of deficiency location on CFRP strengthening of steel CHS short columns", Steel Compos Struct., 28(3), 267-278. https://doi.org/10.12989/scs.2018.28.3.267.
  30. Shahraki, M., Sohrabi, M.R., Azizyan, G. and Narmashiri, K. (2019), "Strengthening of deficient steel SHS columns under axial compressive loads using CFRP", Steel Compos. Struct., 30(1), 069-070. https://doi.org/10.12989/scs.2019.30.1.069.
  31. Sadat Hosseini, A., Zavvar, E. and Ahmadi, H. (2021), "Stress concentration factors in FRP-strengthened steel tubular KT-joints", Appl. Ocean Res., 108, 102525. https://doi.org/10.1016/j.apor.2021.102525.
  32. Teng, J.G. and Hu, Y.M. (2007), "Behavior of FRP-jacketed circular steel tubes and cylindrical shells under axial compression", Constr. Build. Mater., 21, 827-838. https://doi.org/10.1016/j.conbuildmat.2006.06.016.
  33. Tong, L.W., Xu, G.W. and Zhao, X.L. (2019), "Experimental and theoretical studies on reducing hot spot stress on CHS gap K-joints with CFRP strengthening", Eng. Struct., 201, 109827. https://doi.org/10.1016/j.engstruct.2019.109827.
  34. Wei, C., Shao, Y.B. and Chen, C. (2022), "Axial compressive strength of preloaded CHS stubs strengthened by CFRP", Marine Struct., 84, 103242. https://doi.org/10.1016/j.marstruc.2022.103242.
  35. Xiao, Z.G. and Zhao, X.L. (2012), "CFRP repaired welded thin-walled cross-beam connections subject to in-plane fatigue loading", Int. J. Struct. Stabil. Dyn., 12, 195-211. https://doi.org/10.1142/S0219455412004653.
  36. Xu, G.W., Tong, L.W. and Zhao, X.L. (2020), "Numerical analysis and formulae for SCF reduction coefficients of CFRP-strengthened CHS gap K-joints", Eng. Struct., 210, 110369. https://doi.org/10.1016/j.engstruct.2020.110369.
  37. Xu, X.D., Shao, Y.B. and Gao, X.D. (2022), "Stress concentration factor (SCF) of CHS Gap TT-joints reinforced with CFRP", Ocean Eng., 247, 110722. https://doi.org/10.1016/j.oceaneng.2022.110722.
  38. YB/T4558 (2016), Chinese Technical Specification for Strengthening Steel Structures with Fibre Reinforced Polymer, China Standards Organization, Beijing, China.