Acknowledgement
This work was supported by a Research Grant from Pukyong National University (2021-2023).
References
- Abdeljaber, O., Avci, O., Kiranyaz, M.S., Boashash, B., Sodano, H. and Inman, D.J. (2018), "1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data", Neurocomput., 275, 1308-1317. https://doi.org/10.1016/j.neucom.2017.09.069.
- Ai, D., Luo, H. and Zhu, H. (2019), "Numerical and experimental investigation of flexural performance on prestressed concrete structures using electromechanical admittance", Mech. Syst. Signal Pr., 128, 244-265. https://doi.org/10.1016/j.ymssp.2019.03.046.
- Ai, D., Mo, F., Han, Y. and Wen, J. (2022), "Automated identification of compressive stress and damage in concrete specimen using convolutional neural network learned electromechanical admittance", Eng. Struct., 259, 114176. https://doi.org/10.1016/j.engstruct.2022.114176.
- Aryan, P., Sampath, S. and Sohn, H. (2018), "An overview of non-destructive testing methods for integrated circuit packaging inspection", Sensors, 18(7), 1981. https://doi.org/10.3390/s18071981.
- Cancelli, A., Laflamme, S., Alipour, A., Sritharan, S. and Ubertini, F. (2019), "Vibration-based damage localization and quantification in a pretensioned concrete girder using stochastic subspace identification and particle swarm model updating", Struct. Health Monit., 19(2), 587-605. https://doi.org/10.1177/1475921718820015.
- Gu, H., Song, G., Dhonde, H., Mo, Y.L. and Yan, S., (2006), "Concrete early-age strength monitoring using embedded piezoelectric transducers", Smart Mater. Struct., 15(6), 1837. https://doi.org/10.1088/0964-1726/15/6/038.
- Ho, D.D., Kim, J.T., Stubbs, N. and Park, W.S. (2012), "Prestress-force estimation in PSC girder using modal parameters and system identification", Adv. Struct. Eng., 15(6), 997-1012. https://doi.org/10.1260/1369-4332.15.6.997.
- Hou, D.W., Zhao, J.L., Shen, J.S.L. and Chen, J. (2017), "Investigation and improvement of strut-and-tie model for design of end anchorage zone in post-tensioned concrete structure", Constr. Build. Mater., 136, 482-494. https://doi.org/10.1016/j.conbuildmat.2017.01.033.
- Huynh, T.-C., and Kim, J.-T. (2014), "Impedance-based cable force monitoring in tendon-anchorage using portable pzt-interface technique", Math. Probl. Eng., 2014, 1-11. https://doi.org/10.1155/2014/784731
- Huynh, T.C., (2021), "Vision-based autonomous bolt-looseness detection method for splice connections: Design, lab-scale evaluation, and field application", Automat. Constr., 124, 103591. https://doi.org/10.1016/j.autcon.2021.103591
- Huynh, T.C., Nguyen, T.D., Ho, D.D., Dang, N.L. and Kim, J.T. (2020), "Sensor fault diagnosis for impedance monitoring using a piezoelectric-based smart interface technique", Sensors, 20(2), 510. https://doi.org/10.3390/s20020510.
- Johnson, D.H. (2006), "Signal-to-noise ratio", Scholarpedia, 1(12), 2088. https://doi.org/10.4249/scholarpedia.2088.
- Kingma, D.P. and Ba, J., (2014) "Adam: A method for stochastic optimization", arXiv preprint arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980.
- Kocherla, A. and Subramaniam, K.V.L. (2020), "Embedded smart PZT-based sensor for internal damage detection in concrete under applied compression", Measurement, 163, 108018. https://doi.org/10.1016/j.measurement.2020.108018.
- Lee, S., Kalos, N. and Shin, D.H. (2014), "Non-destructive testing methods in the US for bridge inspection and maintenance", KSCE J. Civ. Eng., 18(5), 1322-1331. https://doi.org/10.1007/s12205-014-0633-9.
- Liang, C., Sun, FP, and Rogers, C.A. (1994), "Coupled electromechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer", J. Intell. Mater. Syst. Struct., 8(4), 335-343. https://doi.org/10.1177/1045389X9700800406.
- Mehrabi, A.B., Ligozio, C.A., Ciolko, A.T. and Wyatt, S.T. (2010), "Evaluation, rehabilitation planning, and stay-cable replacement design for the hale boggs bridge in Luling, Louisiana", J. Bridge Eng., 15(4), 364-372. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000061.
- Mei, Z., Ivanov, K., Zhao, G., Wu, Y., Liu, M. and Wang, L. (2020), "Foot type classification using sensorenabled footwear and 1D-CNN", Measurement, 165, 108184. https://doi.org/10.1016/j.measurement.2020.108184.
- Min, J., Park, S. and Yun, C.B. (2010), "Impedance-based structural health monitoring using neural networks for autonomous frequency range selection", Smart Mater. Struct., 19(12), 125011. https://doi.org/10.1088/0964-1726/19/12/125011.
- Na, W.S. and Baek, J. (2018), "A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering structures", Sensors, 18(5), 1307. https://doi.org/10.3390/s18051307.
- Nguyen, T.T., Ta, Q.B., Ho, D.D., Kim, J.T. and Huynh, T.C. (2021), "Deep learning-based functional assessment of piezoelectric-based smart interface under various degradations", Smart Struct. Syst., 28(1), 69-87. https://doi.org/10.12989/sss.2021.28.1.069.
- Nguyen, T.T., Tuong Vy Phan, T., Ho, D.D., Man Singh Pradhan, A. and Huynh, T.C. (2022), "Deep learningbased autonomous damage-sensitive feature extraction for impedance-based prestress monitoring", Eng. Struct., 259, 114172. https://doi.org/10.1016/j.engstruct.2022.114172.
- Park, G., Sohn, H., Farrar, C.R. and Inman, D.J. (2003), "Overview of piezoelectric impedance-based health monitoring and path forward", Shock Vib. Dig., 35(6), 451-464. https://doi.org10.1177/05831024030356001.
- Pham, Q.Q., Dang, N.L. and Kim, J.T. (2021), "Piezoelectric sensor-embedded smart rock for damage monitoring in a prestressed anchorage zone", Sensors, 21(2), 353. https://doi.org/10.3390/s21020353.
- Sony, S., Dunphy, K., Sadhu, A. and Capretz, M. (2021), "A systematic review of convolutional neural network-based structural condition assessment techniques", Eng. Struct., 226, 111347. https://doi.org/10.1016/j.engstruct.2020.111347.
- Sun, F.P., Chaudhry, Z., Liang, C. and Rogers, C.A. (1995), "Truss structure integrity identification using pzt sensor-actuator", J. Intell. Mater. Syst. Struct., 6(1), 134-139. https://doi.org/10.1177/1045389X9500600117.
- Tyagi, S. and Mittal, S. (2020), "Sampling approaches for imbalanced data classification problem in machine learning", Proceedings of the ICRIC 2019: Recent Innovations in Computing, Springer International Publishing. https://doi.org/10.1007/978-3-030-29407-6_17.
- Van Der Maaten, L. and Hinton, G.J.J.O.M.L.R. (2008), "Visualizing data using t-SNE", J. Mach. Learn. Res., 9(86), 2579-2605.
- Vsl (2018), VSL Strand Post-Tensioning Systems. Available online: https://vsl.com/home/technologies/posttensioning-systems/ (accessed on 6 January 2022).
- Wu, C., Xiang, H., Jiang, S. and Ma, S. (2022), "Stress monitoring of concrete via uniaxial piezoelectric sensor", Sensors, 22(11), 4041. https://doi.org/10.3390/s22114041.
- Wu, T., Liu, G., Fu, S. and Xing, F. (2020), "Recent progress of fiber-optic sensors for the structural health monitoring of civil infrastructure", Sensors, 20(16), 4517. https://doi.org/10.3390/s20164517.
- Yang, Z., Gao, W., Chen, L., Yuan, C., Chen, Q. and Kong, Q. (2022), "A novel electromechanical impedancebased method for non-destructive evaluation of concrete fiber content", Constr. Build. Mater., 351, 128972. https://doi.org/10.1016/j.conbuildmat.2022.128972.
- Yuan, F.G., Zargar, S.A., Chen, Q., Wang, S., Zonta, D., Sohn, H., et al. (2020), "Machine learning for structural health monitoring: challenges and opportunities", Proceedings of Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2020. https://doi.org/10.1117/12.2561610.
- Zagrai, A.N. and Giurgiutiu, V. (2001), "Electro-mechanical impedance method for crack detection in thin plates", J. Intell. Mater. Syst. Struct., 12(10), 709-718. https://doi.org/10.1177/104538901320560355.