DOI QR코드

DOI QR Code

1-D CNN deep learning of impedance signals for damage monitoring in concrete anchorage

  • Quoc-Bao Ta (Department of Ocean Engineering, Pukyong National University) ;
  • Quang-Quang Pham (Department of Ocean Engineering, Pukyong National University) ;
  • Ngoc-Lan Pham (Department of Ocean Engineering, Pukyong National University) ;
  • Jeong-Tae Kim (Department of Ocean Engineering, Pukyong National University)
  • 투고 : 2023.01.23
  • 심사 : 2023.03.10
  • 발행 : 2023.03.25

초록

Damage monitoring is a prerequisite step to ensure the safety and performance of concrete structures. Smart aggregate (SA) technique has been proven for its advantage to detect early-stage internal cracks in concrete. In this study, a 1-D CNN-based method is developed for autonomously classifying the damage feature in a concrete anchorage zone using the raw impedance signatures of the embedded SA sensor. Firstly, an overview of the developed method is presented. The fundamental theory of the SA technique is outlined. Also, a 1-D CNN classification model using the impedance signals is constructed. Secondly, the experiment on the SA-embedded concrete anchorage zone is carried out, and the impedance signals of the SA sensor are recorded under different applied force levels. Finally, the feasibility of the developed 1-D CNN model is examined to classify concrete damage features via noise-contaminated signals. The results show that the developed method can accurately classify the damaged features in the concrete anchorage zone.

키워드

과제정보

This work was supported by a Research Grant from Pukyong National University (2021-2023).

참고문헌

  1. Abdeljaber, O., Avci, O., Kiranyaz, M.S., Boashash, B., Sodano, H. and Inman, D.J. (2018), "1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data", Neurocomput., 275, 1308-1317. https://doi.org/10.1016/j.neucom.2017.09.069.
  2. Ai, D., Luo, H. and Zhu, H. (2019), "Numerical and experimental investigation of flexural performance on prestressed concrete structures using electromechanical admittance", Mech. Syst. Signal Pr., 128, 244-265. https://doi.org/10.1016/j.ymssp.2019.03.046.
  3. Ai, D., Mo, F., Han, Y. and Wen, J. (2022), "Automated identification of compressive stress and damage in concrete specimen using convolutional neural network learned electromechanical admittance", Eng. Struct., 259, 114176. https://doi.org/10.1016/j.engstruct.2022.114176.
  4. Aryan, P., Sampath, S. and Sohn, H. (2018), "An overview of non-destructive testing methods for integrated circuit packaging inspection", Sensors, 18(7), 1981. https://doi.org/10.3390/s18071981.
  5. Cancelli, A., Laflamme, S., Alipour, A., Sritharan, S. and Ubertini, F. (2019), "Vibration-based damage localization and quantification in a pretensioned concrete girder using stochastic subspace identification and particle swarm model updating", Struct. Health Monit., 19(2), 587-605. https://doi.org/10.1177/1475921718820015.
  6. Gu, H., Song, G., Dhonde, H., Mo, Y.L. and Yan, S., (2006), "Concrete early-age strength monitoring using embedded piezoelectric transducers", Smart Mater. Struct., 15(6), 1837. https://doi.org/10.1088/0964-1726/15/6/038.
  7. Ho, D.D., Kim, J.T., Stubbs, N. and Park, W.S. (2012), "Prestress-force estimation in PSC girder using modal parameters and system identification", Adv. Struct. Eng., 15(6), 997-1012. https://doi.org/10.1260/1369-4332.15.6.997.
  8. Hou, D.W., Zhao, J.L., Shen, J.S.L. and Chen, J. (2017), "Investigation and improvement of strut-and-tie model for design of end anchorage zone in post-tensioned concrete structure", Constr. Build. Mater., 136, 482-494. https://doi.org/10.1016/j.conbuildmat.2017.01.033.
  9. Huynh, T.-C., and Kim, J.-T. (2014), "Impedance-based cable force monitoring in tendon-anchorage using portable pzt-interface technique", Math. Probl. Eng., 2014, 1-11. https://doi.org/10.1155/2014/784731
  10. Huynh, T.C., (2021), "Vision-based autonomous bolt-looseness detection method for splice connections: Design, lab-scale evaluation, and field application", Automat. Constr., 124, 103591. https://doi.org/10.1016/j.autcon.2021.103591
  11. Huynh, T.C., Nguyen, T.D., Ho, D.D., Dang, N.L. and Kim, J.T. (2020), "Sensor fault diagnosis for impedance monitoring using a piezoelectric-based smart interface technique", Sensors, 20(2), 510. https://doi.org/10.3390/s20020510.
  12. Johnson, D.H. (2006), "Signal-to-noise ratio", Scholarpedia, 1(12), 2088. https://doi.org/10.4249/scholarpedia.2088.
  13. Kingma, D.P. and Ba, J., (2014) "Adam: A method for stochastic optimization", arXiv preprint arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980.
  14. Kocherla, A. and Subramaniam, K.V.L. (2020), "Embedded smart PZT-based sensor for internal damage detection in concrete under applied compression", Measurement, 163, 108018. https://doi.org/10.1016/j.measurement.2020.108018.
  15. Lee, S., Kalos, N. and Shin, D.H. (2014), "Non-destructive testing methods in the US for bridge inspection and maintenance", KSCE J. Civ. Eng., 18(5), 1322-1331. https://doi.org/10.1007/s12205-014-0633-9.
  16. Liang, C., Sun, FP, and Rogers, C.A. (1994), "Coupled electromechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer", J. Intell. Mater. Syst. Struct., 8(4), 335-343. https://doi.org/10.1177/1045389X9700800406.
  17. Mehrabi, A.B., Ligozio, C.A., Ciolko, A.T. and Wyatt, S.T. (2010), "Evaluation, rehabilitation planning, and stay-cable replacement design for the hale boggs bridge in Luling, Louisiana", J. Bridge Eng., 15(4), 364-372. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000061.
  18. Mei, Z., Ivanov, K., Zhao, G., Wu, Y., Liu, M. and Wang, L. (2020), "Foot type classification using sensorenabled footwear and 1D-CNN", Measurement, 165, 108184. https://doi.org/10.1016/j.measurement.2020.108184.
  19. Min, J., Park, S. and Yun, C.B. (2010), "Impedance-based structural health monitoring using neural networks for autonomous frequency range selection", Smart Mater. Struct., 19(12), 125011. https://doi.org/10.1088/0964-1726/19/12/125011.
  20. Na, W.S. and Baek, J. (2018), "A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering structures", Sensors, 18(5), 1307. https://doi.org/10.3390/s18051307.
  21. Nguyen, T.T., Ta, Q.B., Ho, D.D., Kim, J.T. and Huynh, T.C. (2021), "Deep learning-based functional assessment of piezoelectric-based smart interface under various degradations", Smart Struct. Syst., 28(1), 69-87. https://doi.org/10.12989/sss.2021.28.1.069.
  22. Nguyen, T.T., Tuong Vy Phan, T., Ho, D.D., Man Singh Pradhan, A. and Huynh, T.C. (2022), "Deep learningbased autonomous damage-sensitive feature extraction for impedance-based prestress monitoring", Eng. Struct., 259, 114172. https://doi.org/10.1016/j.engstruct.2022.114172.
  23. Park, G., Sohn, H., Farrar, C.R. and Inman, D.J. (2003), "Overview of piezoelectric impedance-based health monitoring and path forward", Shock Vib. Dig., 35(6), 451-464. https://doi.org10.1177/05831024030356001.
  24. Pham, Q.Q., Dang, N.L. and Kim, J.T. (2021), "Piezoelectric sensor-embedded smart rock for damage monitoring in a prestressed anchorage zone", Sensors, 21(2), 353. https://doi.org/10.3390/s21020353.
  25. Sony, S., Dunphy, K., Sadhu, A. and Capretz, M. (2021), "A systematic review of convolutional neural network-based structural condition assessment techniques", Eng. Struct., 226, 111347. https://doi.org/10.1016/j.engstruct.2020.111347.
  26. Sun, F.P., Chaudhry, Z., Liang, C. and Rogers, C.A. (1995), "Truss structure integrity identification using pzt sensor-actuator", J. Intell. Mater. Syst. Struct., 6(1), 134-139. https://doi.org/10.1177/1045389X9500600117.
  27. Tyagi, S. and Mittal, S. (2020), "Sampling approaches for imbalanced data classification problem in machine learning", Proceedings of the ICRIC 2019: Recent Innovations in Computing, Springer International Publishing. https://doi.org/10.1007/978-3-030-29407-6_17.
  28. Van Der Maaten, L. and Hinton, G.J.J.O.M.L.R. (2008), "Visualizing data using t-SNE", J. Mach. Learn. Res., 9(86), 2579-2605.
  29. Vsl (2018), VSL Strand Post-Tensioning Systems. Available online: https://vsl.com/home/technologies/posttensioning-systems/ (accessed on 6 January 2022).
  30. Wu, C., Xiang, H., Jiang, S. and Ma, S. (2022), "Stress monitoring of concrete via uniaxial piezoelectric sensor", Sensors, 22(11), 4041. https://doi.org/10.3390/s22114041.
  31. Wu, T., Liu, G., Fu, S. and Xing, F. (2020), "Recent progress of fiber-optic sensors for the structural health monitoring of civil infrastructure", Sensors, 20(16), 4517. https://doi.org/10.3390/s20164517.
  32. Yang, Z., Gao, W., Chen, L., Yuan, C., Chen, Q. and Kong, Q. (2022), "A novel electromechanical impedancebased method for non-destructive evaluation of concrete fiber content", Constr. Build. Mater., 351, 128972. https://doi.org/10.1016/j.conbuildmat.2022.128972.
  33. Yuan, F.G., Zargar, S.A., Chen, Q., Wang, S., Zonta, D., Sohn, H., et al. (2020), "Machine learning for structural health monitoring: challenges and opportunities", Proceedings of Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2020. https://doi.org/10.1117/12.2561610.
  34. Zagrai, A.N. and Giurgiutiu, V. (2001), "Electro-mechanical impedance method for crack detection in thin plates", J. Intell. Mater. Syst. Struct., 12(10), 709-718. https://doi.org/10.1177/104538901320560355.