Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Grant No. 2020R1A2C2011617) and a Chung-Ang University Research Grant in 2021.
References
- Mansouri S, Heylmann D, Stiewe T et al (2022) Cancer genome and tumor microenvironment: reciprocal crosstalk shapes lung cancer plasticity. Elife 11, e79895
- Jahanban-Esfahlan R, Seidi K, Banimohamad-Shotorbani B, Jahanban-Esfahlan A and Yousefi B (2018) Combination of nanotechnology with vascular targeting agents for effective cancer therapy. J Cell Physiol 233, 2982-2992 https://doi.org/10.1002/jcp.26051
- Brown JM and Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4, 437-447 https://doi.org/10.1038/nrc1367
- Moraes C, Sun Y and Simmons CA (2011) (Micro) managing the mechanical microenvironment. Integr Biol (Camb) 3, 959-971 https://doi.org/10.1039/c1ib00056j
- Ladoux B and Mege RM (2017) Mechanobiology of collective cell behaviours. Nat Rev Mol Cell Biol 18, 743-757 https://doi.org/10.1038/nrm.2017.98
- Jain RK, Martin JD and Stylianopoulos T (2014) The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 16, 321-346 https://doi.org/10.1146/annurev-bioeng-071813-105259
- Jang I and Beningo KA (2019) Integrins, CAFs and mechanical forces in the progression of cancer. Cancers 11, 721
- Henke E, Nandigama R and Ergun S (2020) Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci 6, 160
- Theocharis AD, Skandalis SS, Gialeli C and Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97, 4-27 https://doi.org/10.1016/j.addr.2015.11.001
- Huang J, Zhang L, Wan D et al (2021) Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Targeted Ther 6, 153
- Paszek MJ, Zahir N, Johnson KR et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241-254 https://doi.org/10.1016/j.ccr.2005.08.010
- Shieh AC (2011) Biomechanical forces shape the tumor microenvironment. Ann Biomed Eng 39, 1379-1389 https://doi.org/10.1007/s10439-011-0252-2
- Yu H, Mouw JK and Weaver VM (2011) Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol 21, 47-56 https://doi.org/10.1016/j.tcb.2010.08.015
- Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891-906 https://doi.org/10.1016/j.cell.2009.10.027
- Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326, 1216-1219 https://doi.org/10.1126/science.1176009
- Northey JJ, Przybyla L and Weaver VM (2017) Tissue force programs cell fate and tumor aggression. Cancer Discov 7, 1224-1237 https://doi.org/10.1158/2159-8290.CD-16-0733
- Pang M, Teng Y, Huang J, Yuan Y, Lin F and Xiong C (2017) Substrate stiffness promotes latent TGF-beta1 activation in hepatocellular carcinoma. Biochem Biophys Res Commun 483, 553-558 https://doi.org/10.1016/j.bbrc.2016.12.107
- Le LT, Cazares O, Mouw JK et al (2016) Loss of miR-203 regulates cell shape and matrix adhesion through ROBO1/Rac/FAK in response to stiffness. J Cell Biol 212, 707-719 https://doi.org/10.1083/jcb.201507054
- Kanematsu A, Marui A, Yamamoto S et al (2004) Type I collagen can function as a reservoir of basic fibroblast growth factor. J Control Release 99, 281-292 https://doi.org/10.1016/j.jconrel.2004.07.008
- Noguchi S, Saito A and Nagase T (2018) YAP/TAZ signaling as a molecular link between fibrosis and cancer. Int J Mol Sci 19, 3674
- Scott KE, Fraley SI and Rangamani P (2021) A spatial model of YAP/TAZ signaling reveals how stiffness, dimensionality, and shape contribute to emergent outcomes. Proc Natl Acad Sci U S A 118, e2021571118
- Sousa-Squiavinato ACM, Rocha MR, Barcellos-de-Souza P, de Souza WF and Morgado-Diaz JA (2019) Cofilin-1 signaling mediates epithelial-mesenchymal transition by promoting actin cytoskeleton reorganization and cell-cell adhesion regulation in colorectal cancer cells. Biochim Biophys Acta Mol Cell Res 1866, 418-429 https://doi.org/10.1016/j.bbamcr.2018.10.003
- Huang Q, Hu X, He W et al (2018) Fluid shear stress and tumor metastasis. Am J Cancer Res 8, 763-777
- Tian BR, Lin WF and Zhang Y (2021) Effects of biomechanical forces on the biological behavior of cancer stem cells. J Cancer 12, 5895-5902 https://doi.org/10.7150/jca.60893
- Stylianopoulos T (2017) The solid mechanics of cancer and strategies for improved therapy. J Biomech Eng 139, 10.115/1.4034991
- Helmlinger G, Netti PA, Lichtenbeld HC, Melder RJ and Jain RK (1997) Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol 15, 778-783 https://doi.org/10.1038/nbt0897-778
- Walsh MF, Woo RK, Gomez R and Basson MD (2004) Extracellular pressure stimulates colon cancer cell proliferation via a mechanism requiring PKC and tyrosine kinase signals. Cell Prolif 37, 427-441 https://doi.org/10.1111/j.1365-2184.2004.00324.x
- Kalli M, Minia A, Pliaka V, Fotis C, Alexopoulos LG and Stylianopoulos T (2019) Solid stress-induced migration is mediated by GDF15 through Akt pathway activation in pancreatic cancer cells. Sci Rep 9, 978
- Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69, 4-10 https://doi.org/10.1159/000088478
- Less JR, Posner MC, Skalak TC, Wolmark N and Jain RK (1997) Geometric resistance and microvascular network architecture of human colorectal carcinoma. Microcirculation 4, 25-33 https://doi.org/10.3109/10739689709148315
- Sun C, Jain RK and Munn LL (2007) Non-uniform plasma leakage affects local hematocrit and blood flow: implications for inflammation and tumor perfusion. Ann Biomed Eng 35, 2121-2129 https://doi.org/10.1007/s10439-007-9377-8
- Bacac M and Stamenkovic I (2008) Metastatic Cancer Cell. Ann Rev Pathol Mech 3, 221-247 https://doi.org/10.1146/annurev.pathmechdis.3.121806.151523
- Lee HJ, Diaz MF, Price KM et al (2017) Fluid shear stress activates YAP1 to promote cancer cell motility. Nat Commun 8, 14122
- Triantafillu UL, Park S, Klaassen NL, Raddatz AD and Kim Y (2017) Fluid shear stress induces cancer stem cell-like phenotype in MCF7 breast cancer cell line without inducing epithelial to mesenchymal transition. Int J Oncol 50, 993-1001 https://doi.org/10.3892/ijo.2017.3865
- Wang Y, Goliwas KF, Severino PE et al (2020) Mechanical strain induces phenotypic changes in breast cancer cells and promotes immunosuppression in the tumor microenvironment. Lab Invest 100, 1503-1516 https://doi.org/10.1038/s41374-020-0452-1
- Ross TD, Coon BG, Yun S et al (2013) Integrins in mechanotransduction. Curr Opin Cell Biol 25, 613-618 https://doi.org/10.1016/j.ceb.2013.05.006
- Montagner M and Dupont S (2020) Mechanical forces as determinants of disseminated metastatic cell fate. Cells 9, 250
- Jiang L, Zhao YD and Chen WX (2017) The function of the novel mechanical activated ion channel Piezo1 in the human osteosarcoma cells. Med Sci Monit 23, 5070-5082 https://doi.org/10.12659/MSM.906959
- Li X and Wang J (2020) Mechanical tumor microenvironment and transduction: cytoskeleton mediates cancer cell invasion and metastasis. Int J Biol Sci 16, 2014-2028 https://doi.org/10.7150/ijbs.44943
- Pang MF, Siedlik MJ, Han S, Stallings-Mann M, Radisky DC and Nelson CM (2016) Tissue stiffness and hypoxia modulate the integrin-linked kinase ILK to control breast cancer stem-like cells. Cancer Res 76, 5277-5287 https://doi.org/10.1158/0008-5472.CAN-16-0579
- Zhao F, Li L, Guan L, Yang H, Wu C and Liu Y (2014) Roles for GP IIb/IIIa and alphavbeta3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction. Cancer Lett 344, 62-73 https://doi.org/10.1016/j.canlet.2013.10.019
- Artym VV, Swatkoski S, Matsumoto K et al (2015) Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network. J Cell Biol 208, 331-350 https://doi.org/10.1083/jcb.201405099
- Le HQ, Ghatak S, Yeung CYC et al (2016) Mechanical regulation of transcription controls polycomb-mediated gene silencing during lineage commitment. Nat Cell Biol 18, 864-875 https://doi.org/10.1038/ncb3387
- Vangeel L and Voets T (2019) Transient receptor potential channels and calcium signaling. Cold Spring Harb Perspect Biol 11, a035048
- Pedersen SF, Owsianik G and Nilius B (2005) TRP channels: an overview. Cell Calcium 38, 233-252 https://doi.org/10.1016/j.ceca.2005.06.028
- Santoni G, Farfariello V and Amantini C (2011) TRPV channels in tumor growth and progression. Adv Exp Med Biol 704, 947-967 https://doi.org/10.1007/978-94-007-0265-3_49
- Yang D and Kim J (2020) Emerging role of transient receptor potential (TRP) channels in cancer progression. BMB Rep 53, 125-132 https://doi.org/10.5483/BMBRep.2020.53.3.016
- Nagasawa M and Kojima I (2015) Translocation of TRPV2 channel induced by focal administration of mechanical stress. Physiol Rep 3, e12296
- Lee WH, Choong LY, Mon NN et al (2016) TRPV4 regulates breast cancer cell extravasation, stiffness and actin cortex. Sci Rep 6, 27903
- Dalghi MG, Clayton DR, Ruiz WG et al (2019) Expression and distribution of PIEZO1 in the mouse urinary tract. Am J Physiol Renal Physiol 317, F303-F321 https://doi.org/10.1152/ajprenal.00214.2019
- Hegarty PK, Watson RW, Coffey RN, Webber MM and Fitzpatrick JM (2002) Effects of cyclic stretch on prostatic cells in culture. J Urol 168, 2291-2295 https://doi.org/10.1016/S0022-5347(05)64373-X
- Hoyt K, Castaneda B, Zhang M et al (2008) Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark 4, 213-225 https://doi.org/10.3233/CBM-2008-44-505
- Wadhera P (2013) An introduction to acinar pressures in BPH and prostate cancer. Nat Rev Urol 10, 358-366 https://doi.org/10.1038/nrurol.2013.86
- Kim OH, Choi YW, Park JH et al (2022) Fluid shear stress facilitates prostate cancer metastasis through Piezo1-Src-YAP axis. Life Sci 308, 120936
- Luo M, Cai G, Ho KKY et al (2022) Compression enhances invasive phenotype and matrix degradation of breast cancer cells via Piezo1 activation. BMC Mol Cell Biol 23, 1
- De Felice D and Alaimo A (2020) Mechanosensitive piezo channels in cancer: focus on altered calcium signaling in cancer cells and in tumor progression. Cancers (Basel) 12, 1780
- Pardo-Pastor C, Rubio-Moscardo F, Vogel-Gonzalez M et al (2018) Piezo2 channel regulates RhoA and actin cytoskeleton to promote cell mechanobiological responses. Proc Natl Acad Sci U S A 115, 1925-1930 https://doi.org/10.1073/pnas.1718177115
- Chen X, Wanggou S, Bodalia A et al (2018) A feedforward mechanism mediated by mechanosensitive ion channel piezo1 and tissue mechanics promotes glioma aggression. Neuron 100, 799-815 https://doi.org/10.1016/j.neuron.2018.09.046
- Chaudhary PK and Kim S (2021) An insight into GPCR and G-proteins as cancer drivers. Cells 10, 3288
- Rosenbaum DM, Rasmussen SG and Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459, 356-363 https://doi.org/10.1038/nature08144
- Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF and Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494, 185-194 https://doi.org/10.1038/nature11896
- O'Hayre M, Degese MS and Gutkind JS (2014) Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr Opin Cell Biol 27, 126-135 https://doi.org/10.1016/j.ceb.2014.01.005
- Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4, 540-550 https://doi.org/10.1038/nrc1388
- Xu J, Mathur J, Vessieres E et al (2018) GPR68 senses flow and is essential for vascular physiology. Cell 173, 762-775 e716
- Wei WC, Bianchi F, Wang YK, Tang MJ, Ye H and Glitsch MD (2018) Coincidence detection of membrane stretch and extracellular pH by the proton-sensing receptor OGR1 (GPR68). Curr Biology 28, 3815-3823 https://doi.org/10.1016/j.cub.2018.10.046
- Yang N, Chen T, Wang L et al (2020) CXCR4 mediates matrix stiffness-induced downregulation of UBTD1 driving hepatocellular carcinoma progression via YAP signaling pathway. Theranostics 10, 5790-5801 https://doi.org/10.7150/thno.44789
- Lamaze C and Torrino S (2015) Caveolae and cancer: a new mechanical perspective. Biomed J 38, 367-379 https://doi.org/10.4103/2319-4170.164229
- Thomsen P, Roepstorff K, Stahlhut M and van Deurs B (2002) Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 13, 238-250 https://doi.org/10.1091/mbc.01-06-0317
- Boucrot E, Howes MT, Kirchhausen T and Parton RG (2011) Redistribution of caveolae during mitosis. J Cell Sci 124, 1965-1972 https://doi.org/10.1242/jcs.076570
- Buwa N, Mazumdar D and Balasubramanian N (2020) Caveolin1 tyrosine-14 phosphorylation: role in cellular responsiveness to mechanical cues. J Membr Biol 253, 509-534 https://doi.org/10.1007/s00232-020-00143-0
- Wang Z, Wang N, Liu P et al (2015) Caveolin-1, a stress-related oncotarget, in drug resistance. Oncotarget 6, 37135-37150 https://doi.org/10.18632/oncotarget.5789
- Pu W, Qiu J, Nassar ZD et al (2020) A role for caveolaforming proteins caveolin-1 and CAVIN1 in the pro-invasive response of glioblastoma to osmotic and hydrostatic pressure. J Cell Mol Med 24, 3724-3738 https://doi.org/10.1111/jcmm.15076
- Yang H, Guan L, Li S et al (2016) Mechanosensitive caveolin-1 activation-induced PI3K/Akt/mTOR signaling pathway promotes breast cancer motility, invadopodia formation and metastasis in vivo. Oncotarget 7, 16227-16247 https://doi.org/10.18632/oncotarget.7583
- Avvisato CL, Yang, X, Shah S et al (2007) Mechanical force modulates global gene expression and beta-catenin signaling in colon cancer cells. J Cell Sci 120, 2672-2682 https://doi.org/10.1242/jcs.03476