DOI QR코드

DOI QR Code

Assessment of the characteristics of ferro-geopolymer composite box beams under flexure

  • Received : 2022.09.16
  • Accepted : 2023.03.31
  • Published : 2023.04.25

Abstract

In this paper, an experimental investigation is carried out to assess the inherent self-compacting properties of geopolymer mortar and its impact on flexural strength of thin-walled ferro-geopolymer box beam. The inherent self-compacting properties of the optimal mix of normal geopolymer mortar was studied and compared with self-compacting cement mortar. To assess the flexural strength of box beams, a total of 3 box beams of size 1500 mm × 200 mm × 150 mm consisting of one ferro-cement box beam having a wall thickness of 40 mm utilizing self-compacting cement mortar and two ferro-geopolymer box beams with geopolymer mortar by varying the wall thickness between 40 mm and 50 mm were moulded. The ferro-cement box beam was cured in water and ferro-geopolymer box beams were cured in heat chamber at 75℃ - 80℃ for 24 hours. After curing, the specimens are subjected to flexural testing by applying load at one-third points. The result shows that the ultimate load carrying capacity of ferro-geopolymer and ferro-cement box beams are almost equal. In addition, the stiffness of the ferro-geoploymer box beam is reduced by 18.50% when compared to ferro-cement box beam. Simultaneously, the ductility index and energy absorption capacity are increased by 88.24% and 30.15%, respectively. It is also observed that the load carrying capacity and stiffness of ferro-geopolymer box beams decreases when the wall thickness is increased. At the same time, the ductility and energy absorption capacity increased by 17.50% and 8.25%, respectively. Moreover, all of the examined beams displayed a shear failure pattern.

Keywords

Acknowledgement

The authors express their gratitude and thanks to the Management of Thiagarajar College of Engineering, Madurai and P.S.R. Engineering College, Sivakasi for facilitating this study. The authors are also thankful to the Management of Ramco Institute of Technology, Rajapalayam for their constant support towards research activities.

References

  1. Abdulkadir, G., Metin, K. and Tolga, G.M. (2020), "An analysis of the usability of prefabricated cage-reinforced composite beams with self-compacting and lightweight concrete under flexural loads", Constr. Build. Mater., 255, 119274. https://doi.org/10.1016/j.conbuildmat.2020.119274
  2. Abdullah, M.M.A., Hussin, K., Bnhussain, M., Ismail, K.N. and Ibrahim, W.M.W. (2011), "Mechanism and chemical reaction of fly ash geopolymer cement-a review", Int. J. Pure Appl. Sci. Technol., 6(1), 35-44.
  3. ACI Committee 549 (1997), State-of-the-Art Report on Ferrocement, Report ACI 549-R97, American Concrete Institute, USA.
  4. Ahmed, A. and Radhouane, M. (2015), "Structural performance of new fully and partially concrete-filled rectangular FRP-tube beams", Constr. Build. Mater., 101(1), 652-660. https://doi.org/10.1016/j.conbuildmat.2015.10.060
  5. Aofei, G., Zhihui, S. and Jagannadh, S. (2021), "Experimental and finite element analysis on flexural behavior of mortar beams with chemically modified kenaf fibers", Constr. Build. Mater., 292(123449). https://doi.org/10.1016/j.conbuildmat.2021.123449
  6. ASTM C494 (1999), Standard Specification for Chemical Admixtures for Concrete, ASTM Standards, USA.
  7. ASTM C618-5 (2005), Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM Standards, USA.
  8. ASTM D 2794-93 (2010), Standard test method for resistance of organic coatings to the effects of rapid Deformation (Impact), ASTM Standards, USA.
  9. Bangladesh National Building Code-Part 6 (2012), Structural Design, Chapter12, Ferrocement Structures, 6, 695-714.
  10. BS EN 1015-3 (1999), Methods of test for mortar for masonry Determination of consistence of fresh mortar (by flow table), European Standards, CEN.
  11. Construction Diagnostic Centre Pvt. Ltd. (CDC) (2020), Brochure 2020- For health assessment and risk evaluation of structures, Pune, India.
  12. Davidovits, J. (1979), "Synthetic Mineral Polymer Compound of the Silicoaluminates Family and Preparation Process", US Patent No. 4472199.
  13. Davidovits, J. (1994), "Global warming impact on the cement and aggregates industries", World Resource Review, 6(2), 263-278.
  14. EFNARC Guidelines (2002), Specification and Guidelines for Self-Compacting Concrete.
  15. Francesco, D.M., Peter, C.R., Kees, B. and Michael, P. (2017), "Measuring resource efficiency and circular economy: A market value approach", Resour. Conserv. Recycl., 75(5), 215-221. https://doi.org/10.1016/j.resconrec.2017.02.009
  16. Glukhovsky, V.D. (1957), "Soil silicate-based products and structures", Gosstroiizdat Publish. Kiev, USSR.
  17. Government of Maharashtra-Water Resources Department (2018), WRD Handbook Chapter no. 1 for Ferrocement Technology, Maharashtra Engineering Research Institute, Nashik, India.
  18. Hardjito, D., Cheak, C.C. and Lee Ing, C.H. (2008), "Strength and Setting Times of Low Calcium Fly Ash-based Geopolymer Mortar", Modern Appl. Sci., 2(4), 3-11. https://doi:10.5539/mas.v2n4p3
  19. Ibrahim, G.S., Yousry, B.S., Essam, L.E., Osama, A.K. and Peter, A.A. (2018), "Flexural characteristics of lightweight ferrocement beams with various types of core materials and mesh reinforcement", Constr. Build. Mater., 171, 802-816. https://doi.org/10.1016/j.conbuildmat.2018.03.167
  20. International Energy Agency (IEA) (2022), CO2 Emissions in 2022, France.
  21. IS 13311 (Part 1) (2004), Non-Destructive Testing of Concrete - Methods of Test-Ultrasonic Pulse Velocity, Bureau of Indian Standards, New Delhi, India.
  22. IS 13311 (Part 2) (2004), Non-Destructive Testing of Concrete - Methods of Test-Rebound Hammer, Bureau of Indian Standards, New Delhi, India.
  23. IS 1489 (Part 1) (2005), Portland-Pozzolana cement Specification, Bureau of Indian Standards, New Delhi, India.
  24. IS 1786 (2008), High Strength Deformed Steel bars and Wires for Concrete Reinforcement - Specification, Bureau of Indian Standards, New Delhi, India.
  25. IS 3025 (Part 1) (1987), Methods of Sampling and Test (Physical and Chemical) for Water and Wastewater, Bureau of Indian Standards, New Delhi, India.
  26. IS 3812 (Part 1) (2003), Pulverized Fuel Ash - Specification for use as Pozzolana in Cement, Cement Mortar and Concrete, Bureau of Indian Standards, New Delhi, India.
  27. IS 383 (1997), Specification for Coarse and Fine Aggregates from Natural Sources for Concrete, Bureau of Indian Standards, New Delhi, India.
  28. IS 4031 (Part 6) (1988), Methods of physical tests for hydraulic cement, Determination of compressive strength of hydraulic cement (other than masonry cement), Bureau of Indian Standards, New Delhi, India.
  29. IS 5816 (1999), Methods of Tests for Split Tensile Strength of Concrete Cylinders, Bureau of Indian Standards, New Delhi.
  30. IS 9103 (2004), Concrete Admixtures - Specification, Bureau of Indian Standards, New Delhi, India.
  31. Kuhl, H. (1908), "Slag Cement and Process of Making the Same", 900,939.
  32. Nabila, S., Mohamed, O.A., Enas, T.S., Mohammad, A.A. and Olabid, A.G. (2022), "Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials", Sci. Total Environ., 836, 155577. https://doi.org/10.1016/j.scitotenv.2022.155577
  33. Naghizadeh, A. and Ekolu, S.O. (2019), "Method for comprehensive mix design of fly ash geopolymer mortars", Constr. Build. Mater., 202, 704-717. https://doi.org/10.1016/j.conbuildmat.2018.12.185
  34. Okamura, H. and Ouchi, M. (2003), "Self compacting concrete", J. Adv. Concrete Technol., 1(1), 5-15. http://dx.doi.org/10.3151/jact.1.5
  35. Ouellet-Plamondon, C. and Habert, G. (2015), "Life cycle assessment (LCA) of alkali-activated cements and concretes", Handbook of Alkali-Activated Cements, Mortars and Concretes, 663-686. https://doi.org/10.1533/9781782422884.5.663
  36. Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O. and Fernandez-Jimenez, A. (2014), "A review on alkaline activation: new analytical perspectives", Mater. Construcc., 64, 315. http://dx.doi.org/10.3989/mc.2014.00314
  37. Palomo, A., Maltseva, O., Garcia-Lodeiro, I. and Fernandez-Jimenez, A. (2021), "Portland Versus Alkaline Cement: Continuity or Clean Break: A Key Decision for Global Sustainability", Frontiers in Chemistry, 9, 705475. https://doi.org/10.3389/fchem.2021.705475
  38. Parthiban, N. and Neelamegam, M. (2017), "Flexural behavior of reinforced concrete beam with hollow core in shear section", Int. Res. J. Eng. Technol. (IRJET), 4(4). https://www.irjet.net/archives/V4/i4/IRJET-V4I4573.pdf
  39. Pierrehumbert, R. (2019), "There is no Plan B for dealing with the climate crisis", Bull. Atomic Scient., 75(5), 215-221. https://doi.org/10.1080/00963402.2019.1654255
  40. Peng, Z., Kexun, W., Juan, W., Jinjun, G., Shaowei, H. and Yifeng, L. (2020), "Mechanical properties and prediction of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and nano-SiO2", Ceram. Int., 46(12), 20027-20037. https://doi.org/10.1016/j.ceramint.2020.05.074
  41. Perry, R.H. (1997), Perry's Handbook for Chemical Engineers, McGraw - Hill, USA.
  42. Portland Cement Association (PCA) Report (2019), Washington.
  43. Provis, J.L. (2014), "Geopolymers and other alkali activated materials: why, how, and what?", Mater. Struct., 47, 11-25. https://doi.org/10.1617/s11527-013-0211-5
  44. Provis, J.L. and Van Deventer, J.S.L. (2009), "Geopolymers-Structure, processing, properties and industrial applications", Woodhead publishing limited, Cambridge, UK. www.woodheadpublishing.com
  45. Purdon, A. (1940), "The action of alkalis on blast-furnace slag", J. Soc. Chem. Ind., 59, 191-202. https://doi.org/10.1002/jctb.5000591202
  46. Robbie, M.A. (2018), "Global CO2 emissions from cement production", Earth Syst. Sci. Data, 10, 195-217. https://doi.org/10.5194/essd-10-195-2018
  47. Sakkarai, D. and Soundarapandian, N. (2021), "Strength behavior of flat and folded fly ash-based geopolymer ferrocement panels under flexure and impact", Adv. Civil Eng., 2021(2311518). https://doi.org/10.1155/2021/2311518
  48. Shannag, M.J. and Mourad, S.M. (2012), "Flowable high strength cementitious matrices for ferrocement applications", Constr. Build. Mater., 36, 933-939. https://doi.org/10.1016/j.conbuildmat.2012.06.051
  49. Temuujin, J., Riessen, A.V. and Mackenzie, K.J.D. (2010), "Preparation and characterisation of fly ash based geopolymer mortars", Constr. Build. Mater., 24, 1906-1910. https://doi.org/10.1016/j.conbuildmat.2010.04.012
  50. Tran, D.H., Kroisova, D., Louda, P., Bortnovsky, O. and Bezucha, P. (2009), "Effect of curing temperature on flexural properties of silica-based geopolymer-carbon reinforced composite", J. Achieve. Mater. Manuf. Eng., 37(2), 492-497. http://jamme.acmsse.h2.pl/papers_vol37_2/37238.pdf
  51. Xie, J. and Kayali, O. (2016), "Effect of superplasticiser on workability enhancement of Class F and Class C fly ash-based geopolymers", Constr. Build. Mater., 122, 36-42. https://doi.org/10.1016/j.conbuildmat.2016.06.067