Acknowledgement
This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2023/R/1444)
References
- Alfven, H. (1942), "Existence of electromagnetic-hydrodynamic waves", Nature, 150(3805), 405-406. https://doi.org/10.1038/150405d0
- Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles3 reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., Int. J., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585
- Alkanhal, T.A., Sheikholeslami, M., Usman, M., Haq, R.U., Shafee, A., Al-Ahmadi, A.S. and Tlili, I. (2019), "Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source", Int. J. Heat Mass Transfer, 139, 87-94. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.006
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
- Ayodeji, F., Tope, A. and Samuel, O. (2019), "Magnetohydrodynamics (MHD) bioconvection nanofluid slip flow over a stretching sheet with microorganism concentration and bioconvection Peclet number effects", Am. J. Mech. Indust. Eng., 4(6), 86-95. https://doi.org/10.11648/j.ajmie.20190406.11
- Ayodeji, F., Tope, A. and Pele, O. (2020), "Magnetohydrodynamics (MHD) Bioconvection Nanofluid Slip Flow over a Stretching Sheet with Thermophoresis, Viscous Dissipation and Brownian Motion", Mach. Learn. Res., 4(4), 51. https://doi.org/10.11648/j.mlr.20190404.12
- Azizkhani, M., Kadkhodapour, J., Anaraki, A.P., Hadavand, B.S. and Kolahchi, R. (2020), "Study of body movement monitoring utilizing nano-composite strain sensors contaning Carbon nanotubes and silicone rubber", Steel Compos. Struct., Int. J., 35(6), 779-788. http://dx.doi.org/10.12989/scs.2020.35.6.779
- Choi, S.U. and Eastman, J.A. (1995), "Enhancing thermal conductivity of fluids with nanoparticles", (No. ANL/MSD/CP-84938; CONF-951135-29), Argonne National Lab., IL, USA.
- Fakhar, M.H., Naser, A.O.A., Swelum, H.E.O., Kamaleldin, A. and Badr, O.M. (2019), "Analysis of critical fluid velocity and heat transfer in temperature-dependent nanocomposite pipes conveying nanofluid subjected to heat generation, conduction, convection and magnetic field", Steel Compos. Struct., Int. J., 30(3), 281-292. http://dx.doi.org/10.12989/scs.2019.30.3.281
- Fazilati, J. (2018), "Stability of tow-steered curved panels with geometrical defects using higher order FSM", Steel Compos. Struct., Int. J., 28(1), 25-37. https://doi.org/10.12989/scs.2018.28.1.025
- Gao, S., Peng, Z., Wang, X. and Liu, J. (2019), "Compressive behavior of circular hollow and concrete-filled steel tubular stub columns under atmospheric corrosion", Steel Compos. Struct., Int. J., 33(4), 615-627. https://doi.org/10.12989/scs.2019.33.4.615
- Gireesha, B.J., Mahanthesh, B. and Rashidi, M.M. (2015), "MHD boundary layer heat and mass transfer of a chemically reacting Casson fluid over a permeable stretching surface with non-uniform heat source/ sink", pp. 247-260.
- Gupta, Y., Rana, P., Beg, O.A. and Kadir, A. (2020), "Multiple solutions for slip effects on dissipative magneto-nanofluid transport phenomena in porous media: stability analysis", J. Appl. Computat. Mech., 6(4), 956-967.
- Hassan, A., Wahab, A., Qasim, M.A., Janjua, M.M., Ali, M.A., Ali, H.M., Jadoon, T.R., Ali, E., Raza, A. and Javaid, N. (2020), "Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system", Renew. Energy, 145, 282-293. https://doi.org/10.1016/j.renene.2019.05.130
- Hayat, T. and Mehmood, O.U. (2011), "Slip effects on MHD flow of third order fluid in a planar channel", Commun. Nonlinear Sci. Numer. Simul., 16(3), 1363-1377. https://doi.org/10.1016/j.cnsns.2010.06.034
- Hayat, T., Asad, S., Mustafa, M. and Alsaedi, A. (2015), "MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet", Comput. Fluids, 108, 179-185. https://doi.org/10.1016/j.compfluid.2014.11.016
- Ibanez, G., Lopez, A., Lopez, I., Pantoja, J., Moreira, J. and Lastres, O. (2019), "Optimization of MHD nanofluid flow in a vertical microchannel with a porous medium, nonlinear radiation heat flux, slip flow and convective-radiative boundary conditions", J. Thermal Anal. Calorim., 135(6), 3401-3420. https://doi.org/10.1007/s10973-018-7558-3
- Ibrahim, W. and Gamachu, D. (2019), "Nonlinear convection flow of Williamson nanofluid past a radially stretching surface", AIP Advances, 9(8), 085026. https://doi.org/10.1063/1.5113688
- Jha, B.K. and Apere, C.A. (2013), "Unsteady MHD two-phase Couette flow of fluid-particle suspension", Appl. Mathe. Modell., 37(4), 1920-1931. https://doi.org/10.1016/j.apm.2012.04.056
- Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., Int. J., 3(1), 39-54. https://doi.org/10.12989/acc.2015.3.1.039
- Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transfer, 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
- Khan, A., Ali, H.M., Nazir, R., Ali, R., Munir, A., Ahmad, B. and Ahmad, Z. (2019), "Experimental investigation of enhanced heat transfer of a car radiator using ZnO nanoparticles in H 2 O-ethylene glycol mixture", J. Thermal Anal. Calorim., 138(5), 3007-3021. https://doi.org/10.1007/s10973-019-08320-7
- Kumaran, V. and Ramanaiah, G. (1996), "A note on the flow over a stretching sheet", Acta Mechanica, 116(1-4), 229-233. https://doi.org/10.1007/BF01171433
- Kuznetsov, A.V. and Nield, D.A. (2010), "Natural convective boundary-layer flow of a nanofluid past a vertical plate", Int. J. Thermal Sci., 49(2), 243-247. https://doi.org/10.1016/j.ijthermalsci.2009.07.015
- Liang, G. and Mudawar, I. (2019), "Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels", Int. J. Heat Mass Transfer, 136, 324-354. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.086
- Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
- Makinde, O.D. (2010), "Similarity solution of hydromagnetic heat and mass transfer over a vertical plate with a convective surface boundary condition", Int. J. Phys. Sci., 5(6), 700-710. http://www.academicjournals.org/IJPS https://doi.org/10.1002/cjce.20369
- Makinde, O.D. and Aziz, A. (2010), "MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition", Int. J. Thermal Sci., 49(9), 1813-1820. https://doi.org/10.1016/j.ijthermalsci.2010.05.015
- Makinde, O.D., Khan, W.A. and Khan, Z.H. (2013), "Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet", Int. J. Heat Mass Transfer, 62, 526-533. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.049
- Maleki, H., Safaei, M.R., Togun, H. and Dahari, M. (2019), "Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation", J. Thermal Anal. Calorim., 135(3), 1643-1654. https://doi.org/10.1007/s10973-018-7559-2
- Malvandi, A. (2015), "The unsteady flow of a nanofluid in the stagnation point region of a time-dependent rotating sphere", Thermal Sci., 19(5), 1603-1612. https://doi.org/10.2298/TSCI121020079M
- Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., Int. J., 5(5), 539-561. https://doi.org/10.12989/acc.2017.5.5.539
- Mijajlovic, M.M., Vidojkovic, S., Ciric, D. and Marinkovic, D. (2020), "Numerical simulation of fluid-structure interaction between fishing wobbler and water", Facta Unversitatis, 18(4), 665-676. https://doi.org/10.22190/FUME200128015M
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme", Steel Compos. Struct., Int. J., 35(6), 765-777. http://dx.doi.org/10.12989/scs.2020.35.6.765
- Mondal, H. and Bharti, S. (2020), "Spectral quasi-linearization for MHD nanofluid stagnation boundary layer flow due to a stretching/shrinking surface", J. Appl. Computat. Mech., 6(4), 1058-1068. https://doi.org/10.22055/JACM.2019.30677.1766
- Mousavi, S.M., Rostami, M.N., Yousefi, M. and Dinarvand, S. (2021), "Dual solutions for MHD flow of a water-based TiO2-Cu hybrid nanofluid over a continuously moving thin needle in presence of thermal radiation", Reports Mech. Eng., 2(1), 31-40. https://doi.org/10.31181/rme200102031m
- Mustafa, M., Hina, S., Hayat, T. and Alsaedi, A. (2013), "Slip effects on the peristaltic motion of nanofluid in a channel with wall properties", J. Heat Transfer, 135(4). https://doi.org/10.1115/1.4023038
- Mustafa, M., Khan, J.A., Hayat, T. and Alsaedi, A. (2015), "Sakiadis flow of Maxwell fluid considering magnetic field and convective boundary conditions", Aip Advances, 5(2), 027106. https://doi.org/10.1063/1.4907927
- Nadeem, S., Hussain, M. and Naz, M. (2010), "MHD stagnation flow of a micropolar fluid through a porous medium", Meccanica, 45(6), 869-880. https://doi.org/10.1007/s11012-010-9297-9
- Nasiri, H., Jamalabadi, M.Y.A., Sadeghi, R., Safaei, M.R., Nguyen, T.K. and Shadloo, M.S. (2019), "A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows", J. Thermal Anal. Calorim., 135(3), 1733-1741. https://doi.org/10.1007/s10973-018-7022-4
- Nazari, S., Ellahi, R., Sarafraz, M.M., Safaei, M.R., Asgari, A. and Akbari, O.A. (2019), "Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity", J. Thermal Anal. Calorim., 140, 1121-1145. https://doi.org/10.1007/s10973-019-08841-1
- Ouakad, H.M., Sedighi, H.M. and Al-Qahtani, H.M. (2020), "Forward and backward whirling of a spinning nanotube nano-rotor assuming gyroscopic effects", Adv. Nano Res., Int. J., 8(3), 245-254. http://dx.doi.org/10.12989/anr.2020.8.3.245
- Pramuanjaroenkij, A., Tongkratoke, A. and Kakac, S. (2018), "Numerical study of mixing thermal conductivity models for nanofluid heat transfer enhancement", J. Eng. Phys. Thermophys., 91(1), 104-114. https://doi.org/10.1007/s10891-018-1724-0
- Rashidi, S., Javadi, P. and Esfahani, J.A. (2019), "Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate", J. Thermal Anal. Calorim., 135(1), 551-563. https://doi.org/10.1007/s10973-018-7164-4
- Razi, S.M., Soid, S.K., Aziz, A.S.A., Adli, N. and Ali, Z.M. (2019), "Williamson nanofluid flow over a stretching sheet with varied wall thickness and slip effects", In: Journal of Physics: Conference Series (Vol. 1366, No. 1, p. 012007), IOP Publishing. https://doi.org/10.1088/1742-6596/1366/1/012007
- Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., Int. J., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265
- Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., Int. J., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043
- Sheikholeslami, M., Gerdroodbary, M.B., Moradi, R., Shafee, A. and Li, Z. (2019a), "Application of Neural Network for estimation of heat transfer treatment of Al2O3-H2O nanofluid through a channel", Comput. Methods Appl. Mech. Eng., 344, 1-12. https://doi.org/10.1016/j.cma.2018.09.025
- Sheikholeslami, M., Mehryan, S.A.M., Shafee, A. and Sheremet, M.A. (2019b), "Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity", J. Molecular Liquids, 277, 388-396. https://doi.org/10.1016/j.molliq.2018.12.104
- Siddiqa, S., Begum, N., Saleem, S., Hossain, M.A. and Gorla, R.S.R. (2016), "Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone", Int. J. Heat Mass Transfer, 101, 608-613. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.076
- Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., Int. J., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
- Szilagyi, I.M., Santala, E., Heikkila, M., Kemell, M., Nikitin, T., Khriachtchev, L., Rasanen, M., Ritala, M. and Leskela, M. (2011), "Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers", J. Thermal Anal. Calorim., 105(1), 73-81. https://doi.org/10.1007/s10973-011-1631-5
- Taiyari, F., Mazzolani, F.M. and Bagheri, S. (2019), "Seismic performance assessment of steel building frames equipped with a novel type of bending dissipative braces", Steel Compos. Struct., Int. J., 33(4), 525-535. https://doi.org/10.12989/scs.2019.33.4.525
- Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., Int. J., 8(2), 135-148. http://dx.doi.org/10.12989/anr.2020.8.2.135
- Timesli, A. (2020), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res., Int. J., 9(2), 69-82. http://dx.doi.org/10.12989/anr.2020.9.2.069
- Ullah, A., Shah, Z., Kumam, P., Ayaz, M., Islam, S. and Jameel, M. (2019), "Viscoelastic MHD nanofluid thin film flow over an unsteady vertical stretching sheet with entropy generation", Processes, 7(5), 262. https://doi.org/10.3390/pr7050262
- Williamson, R.V. (1929), "The flow of pseudoplastic materials", Industr. Eng. Chem., 21(11), 1108-1111. https://doi.org/10.1021/ie50239a035
- Yan, J.B., Dong, X. and Wang, T. (2020), "Flexural performance of double skin composite beams at the Arctic low temperature", Steel Compos. Struct., Int. J., 37(4), 431-446. https://doi.org/10.12989/scs.2020.37.4.431
- Zhou, C., Chen, Z., Li, J., Cai, L. and Huang, Z. (2020), "Structural performance of novel SCARC column under axial and eccentric loads", Steel Compos. Struct., Int. J., 37(5), 503-516. https://doi.org/10.12989/scs.2020.37.5.503