DOI QR코드

DOI QR Code

Response of rotational parameter in the stagnation point with motile microorganism: Unsteady nanofluid

  • Mohamed A. Khadimallah (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Imene Harbaoui (Laboratory of Applied Mechanics and Engineering LR-MAI, University Tunis El Manar) ;
  • Sofiene Helaili (Carthage University, Tunisia Polytechnic School) ;
  • Abdelhakim Benslimane (Laboratoire de Mecanique Materiaux et Energetique (L2ME), Departement Genie Mecanique, Faculte de Technologie, Universite de Bejaia) ;
  • Humaira Sharif (Department of Mathematics, Govt. College University Faisalabad) ;
  • Muzamal Hussain (Department of Mathematics, Govt. College University Faisalabad) ;
  • Muhammad Nawaz Naeem (Department of Mathematics, Govt. College University Faisalabad) ;
  • Mohamed R. Ali (Faculty of Engineering and Technology, Future University in Egypt New Cairo) ;
  • Aqib Majeed (Department of Mathematics, The University of Faisalabad) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2021.07.04
  • Accepted : 2023.03.15
  • Published : 2023.04.25

Abstract

The unsteady mixed convection Casson type MHD nanofluid flow in the stagnation point with motile microorganism around a spinning sphere is investigated. Time dependent flow dynamics is considered. Similarity transformations have been employed to transfer the governing partial differential structure into ordinary differential structure. The impact of distinct parameters is examined via tables and graphs. The impact of rotational parameter (spin) on profiles of velocity profiles, temperature and concentration is revealed for unsteady mixed convection Casson type MHD nanofluid flow. It is observed that it is clear that rotational parameter has a great effect on non-dimensional primary velocity component but rotational parameter has a slight impact on non-dimensional secondary velocity component. The validity of the current investigation is authorized through comparing the existing outcomes with previous published literature.

Keywords

Acknowledgement

This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2023/R/1444)

References

  1. Alfven, H. (1942), "Existence of electromagnetic-hydrodynamic waves", Nature, 150(3805), 405-406. https://doi.org/10.1038/150405d0
  2. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles3 reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., Int. J., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585
  3. Alkanhal, T.A., Sheikholeslami, M., Usman, M., Haq, R.U., Shafee, A., Al-Ahmadi, A.S. and Tlili, I. (2019), "Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source", Int. J. Heat Mass Transfer, 139, 87-94. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.006
  4. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
  5. Ayodeji, F., Tope, A. and Samuel, O. (2019), "Magnetohydrodynamics (MHD) bioconvection nanofluid slip flow over a stretching sheet with microorganism concentration and bioconvection Peclet number effects", Am. J. Mech. Indust. Eng., 4(6), 86-95. https://doi.org/10.11648/j.ajmie.20190406.11
  6. Ayodeji, F., Tope, A. and Pele, O. (2020), "Magnetohydrodynamics (MHD) Bioconvection Nanofluid Slip Flow over a Stretching Sheet with Thermophoresis, Viscous Dissipation and Brownian Motion", Mach. Learn. Res., 4(4), 51. https://doi.org/10.11648/j.mlr.20190404.12
  7. Azizkhani, M., Kadkhodapour, J., Anaraki, A.P., Hadavand, B.S. and Kolahchi, R. (2020), "Study of body movement monitoring utilizing nano-composite strain sensors contaning Carbon nanotubes and silicone rubber", Steel Compos. Struct., Int. J., 35(6), 779-788. http://dx.doi.org/10.12989/scs.2020.35.6.779
  8. Choi, S.U. and Eastman, J.A. (1995), "Enhancing thermal conductivity of fluids with nanoparticles", (No. ANL/MSD/CP-84938; CONF-951135-29), Argonne National Lab., IL, USA.
  9. Fakhar, M.H., Naser, A.O.A., Swelum, H.E.O., Kamaleldin, A. and Badr, O.M. (2019), "Analysis of critical fluid velocity and heat transfer in temperature-dependent nanocomposite pipes conveying nanofluid subjected to heat generation, conduction, convection and magnetic field", Steel Compos. Struct., Int. J., 30(3), 281-292. http://dx.doi.org/10.12989/scs.2019.30.3.281
  10. Fazilati, J. (2018), "Stability of tow-steered curved panels with geometrical defects using higher order FSM", Steel Compos. Struct., Int. J., 28(1), 25-37. https://doi.org/10.12989/scs.2018.28.1.025
  11. Gao, S., Peng, Z., Wang, X. and Liu, J. (2019), "Compressive behavior of circular hollow and concrete-filled steel tubular stub columns under atmospheric corrosion", Steel Compos. Struct., Int. J., 33(4), 615-627. https://doi.org/10.12989/scs.2019.33.4.615
  12. Gireesha, B.J., Mahanthesh, B. and Rashidi, M.M. (2015), "MHD boundary layer heat and mass transfer of a chemically reacting Casson fluid over a permeable stretching surface with non-uniform heat source/ sink", pp. 247-260.
  13. Gupta, Y., Rana, P., Beg, O.A. and Kadir, A. (2020), "Multiple solutions for slip effects on dissipative magneto-nanofluid transport phenomena in porous media: stability analysis", J. Appl. Computat. Mech., 6(4), 956-967.
  14. Hassan, A., Wahab, A., Qasim, M.A., Janjua, M.M., Ali, M.A., Ali, H.M., Jadoon, T.R., Ali, E., Raza, A. and Javaid, N. (2020), "Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system", Renew. Energy, 145, 282-293. https://doi.org/10.1016/j.renene.2019.05.130
  15. Hayat, T. and Mehmood, O.U. (2011), "Slip effects on MHD flow of third order fluid in a planar channel", Commun. Nonlinear Sci. Numer. Simul., 16(3), 1363-1377. https://doi.org/10.1016/j.cnsns.2010.06.034
  16. Hayat, T., Asad, S., Mustafa, M. and Alsaedi, A. (2015), "MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet", Comput. Fluids, 108, 179-185. https://doi.org/10.1016/j.compfluid.2014.11.016
  17. Ibanez, G., Lopez, A., Lopez, I., Pantoja, J., Moreira, J. and Lastres, O. (2019), "Optimization of MHD nanofluid flow in a vertical microchannel with a porous medium, nonlinear radiation heat flux, slip flow and convective-radiative boundary conditions", J. Thermal Anal. Calorim., 135(6), 3401-3420. https://doi.org/10.1007/s10973-018-7558-3
  18. Ibrahim, W. and Gamachu, D. (2019), "Nonlinear convection flow of Williamson nanofluid past a radially stretching surface", AIP Advances, 9(8), 085026. https://doi.org/10.1063/1.5113688
  19. Jha, B.K. and Apere, C.A. (2013), "Unsteady MHD two-phase Couette flow of fluid-particle suspension", Appl. Mathe. Modell., 37(4), 1920-1931. https://doi.org/10.1016/j.apm.2012.04.056
  20. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., Int. J., 3(1), 39-54. https://doi.org/10.12989/acc.2015.3.1.039
  21. Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transfer, 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
  22. Khan, A., Ali, H.M., Nazir, R., Ali, R., Munir, A., Ahmad, B. and Ahmad, Z. (2019), "Experimental investigation of enhanced heat transfer of a car radiator using ZnO nanoparticles in H 2 O-ethylene glycol mixture", J. Thermal Anal. Calorim., 138(5), 3007-3021. https://doi.org/10.1007/s10973-019-08320-7
  23. Kumaran, V. and Ramanaiah, G. (1996), "A note on the flow over a stretching sheet", Acta Mechanica, 116(1-4), 229-233. https://doi.org/10.1007/BF01171433
  24. Kuznetsov, A.V. and Nield, D.A. (2010), "Natural convective boundary-layer flow of a nanofluid past a vertical plate", Int. J. Thermal Sci., 49(2), 243-247. https://doi.org/10.1016/j.ijthermalsci.2009.07.015
  25. Liang, G. and Mudawar, I. (2019), "Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels", Int. J. Heat Mass Transfer, 136, 324-354. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.086
  26. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
  27. Makinde, O.D. (2010), "Similarity solution of hydromagnetic heat and mass transfer over a vertical plate with a convective surface boundary condition", Int. J. Phys. Sci., 5(6), 700-710. http://www.academicjournals.org/IJPS https://doi.org/10.1002/cjce.20369
  28. Makinde, O.D. and Aziz, A. (2010), "MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition", Int. J. Thermal Sci., 49(9), 1813-1820. https://doi.org/10.1016/j.ijthermalsci.2010.05.015
  29. Makinde, O.D., Khan, W.A. and Khan, Z.H. (2013), "Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet", Int. J. Heat Mass Transfer, 62, 526-533. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.049
  30. Maleki, H., Safaei, M.R., Togun, H. and Dahari, M. (2019), "Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation", J. Thermal Anal. Calorim., 135(3), 1643-1654. https://doi.org/10.1007/s10973-018-7559-2
  31. Malvandi, A. (2015), "The unsteady flow of a nanofluid in the stagnation point region of a time-dependent rotating sphere", Thermal Sci., 19(5), 1603-1612. https://doi.org/10.2298/TSCI121020079M
  32. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., Int. J., 5(5), 539-561. https://doi.org/10.12989/acc.2017.5.5.539
  33. Mijajlovic, M.M., Vidojkovic, S., Ciric, D. and Marinkovic, D. (2020), "Numerical simulation of fluid-structure interaction between fishing wobbler and water", Facta Unversitatis, 18(4), 665-676. https://doi.org/10.22190/FUME200128015M
  34. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme", Steel Compos. Struct., Int. J., 35(6), 765-777. http://dx.doi.org/10.12989/scs.2020.35.6.765
  35. Mondal, H. and Bharti, S. (2020), "Spectral quasi-linearization for MHD nanofluid stagnation boundary layer flow due to a stretching/shrinking surface", J. Appl. Computat. Mech., 6(4), 1058-1068. https://doi.org/10.22055/JACM.2019.30677.1766
  36. Mousavi, S.M., Rostami, M.N., Yousefi, M. and Dinarvand, S. (2021), "Dual solutions for MHD flow of a water-based TiO2-Cu hybrid nanofluid over a continuously moving thin needle in presence of thermal radiation", Reports Mech. Eng., 2(1), 31-40. https://doi.org/10.31181/rme200102031m
  37. Mustafa, M., Hina, S., Hayat, T. and Alsaedi, A. (2013), "Slip effects on the peristaltic motion of nanofluid in a channel with wall properties", J. Heat Transfer, 135(4). https://doi.org/10.1115/1.4023038
  38. Mustafa, M., Khan, J.A., Hayat, T. and Alsaedi, A. (2015), "Sakiadis flow of Maxwell fluid considering magnetic field and convective boundary conditions", Aip Advances, 5(2), 027106. https://doi.org/10.1063/1.4907927
  39. Nadeem, S., Hussain, M. and Naz, M. (2010), "MHD stagnation flow of a micropolar fluid through a porous medium", Meccanica, 45(6), 869-880. https://doi.org/10.1007/s11012-010-9297-9
  40. Nasiri, H., Jamalabadi, M.Y.A., Sadeghi, R., Safaei, M.R., Nguyen, T.K. and Shadloo, M.S. (2019), "A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows", J. Thermal Anal. Calorim., 135(3), 1733-1741. https://doi.org/10.1007/s10973-018-7022-4
  41. Nazari, S., Ellahi, R., Sarafraz, M.M., Safaei, M.R., Asgari, A. and Akbari, O.A. (2019), "Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity", J. Thermal Anal. Calorim., 140, 1121-1145. https://doi.org/10.1007/s10973-019-08841-1
  42. Ouakad, H.M., Sedighi, H.M. and Al-Qahtani, H.M. (2020), "Forward and backward whirling of a spinning nanotube nano-rotor assuming gyroscopic effects", Adv. Nano Res., Int. J., 8(3), 245-254. http://dx.doi.org/10.12989/anr.2020.8.3.245
  43. Pramuanjaroenkij, A., Tongkratoke, A. and Kakac, S. (2018), "Numerical study of mixing thermal conductivity models for nanofluid heat transfer enhancement", J. Eng. Phys. Thermophys., 91(1), 104-114. https://doi.org/10.1007/s10891-018-1724-0
  44. Rashidi, S., Javadi, P. and Esfahani, J.A. (2019), "Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate", J. Thermal Anal. Calorim., 135(1), 551-563. https://doi.org/10.1007/s10973-018-7164-4
  45. Razi, S.M., Soid, S.K., Aziz, A.S.A., Adli, N. and Ali, Z.M. (2019), "Williamson nanofluid flow over a stretching sheet with varied wall thickness and slip effects", In: Journal of Physics: Conference Series (Vol. 1366, No. 1, p. 012007), IOP Publishing. https://doi.org/10.1088/1742-6596/1366/1/012007
  46. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., Int. J., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265
  47. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., Int. J., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043
  48. Sheikholeslami, M., Gerdroodbary, M.B., Moradi, R., Shafee, A. and Li, Z. (2019a), "Application of Neural Network for estimation of heat transfer treatment of Al2O3-H2O nanofluid through a channel", Comput. Methods Appl. Mech. Eng., 344, 1-12. https://doi.org/10.1016/j.cma.2018.09.025
  49. Sheikholeslami, M., Mehryan, S.A.M., Shafee, A. and Sheremet, M.A. (2019b), "Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity", J. Molecular Liquids, 277, 388-396. https://doi.org/10.1016/j.molliq.2018.12.104
  50. Siddiqa, S., Begum, N., Saleem, S., Hossain, M.A. and Gorla, R.S.R. (2016), "Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone", Int. J. Heat Mass Transfer, 101, 608-613. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.076
  51. Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., Int. J., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
  52. Szilagyi, I.M., Santala, E., Heikkila, M., Kemell, M., Nikitin, T., Khriachtchev, L., Rasanen, M., Ritala, M. and Leskela, M. (2011), "Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers", J. Thermal Anal. Calorim., 105(1), 73-81. https://doi.org/10.1007/s10973-011-1631-5
  53. Taiyari, F., Mazzolani, F.M. and Bagheri, S. (2019), "Seismic performance assessment of steel building frames equipped with a novel type of bending dissipative braces", Steel Compos. Struct., Int. J., 33(4), 525-535. https://doi.org/10.12989/scs.2019.33.4.525
  54. Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., Int. J., 8(2), 135-148. http://dx.doi.org/10.12989/anr.2020.8.2.135
  55. Timesli, A. (2020), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res., Int. J., 9(2), 69-82. http://dx.doi.org/10.12989/anr.2020.9.2.069
  56. Ullah, A., Shah, Z., Kumam, P., Ayaz, M., Islam, S. and Jameel, M. (2019), "Viscoelastic MHD nanofluid thin film flow over an unsteady vertical stretching sheet with entropy generation", Processes, 7(5), 262. https://doi.org/10.3390/pr7050262
  57. Williamson, R.V. (1929), "The flow of pseudoplastic materials", Industr. Eng. Chem., 21(11), 1108-1111. https://doi.org/10.1021/ie50239a035
  58. Yan, J.B., Dong, X. and Wang, T. (2020), "Flexural performance of double skin composite beams at the Arctic low temperature", Steel Compos. Struct., Int. J., 37(4), 431-446. https://doi.org/10.12989/scs.2020.37.4.431
  59. Zhou, C., Chen, Z., Li, J., Cai, L. and Huang, Z. (2020), "Structural performance of novel SCARC column under axial and eccentric loads", Steel Compos. Struct., Int. J., 37(5), 503-516. https://doi.org/10.12989/scs.2020.37.5.503