DOI QR코드

DOI QR Code

Determination and evaluation of dynamic properties for structures using UAV-based video and computer vision system

  • Rithy Prak (School of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • Ji Ho Park (School of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • Sanggi Jeong (School of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • Arum Jang (School of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • Min Jae Park (School of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • Thomas H.-K. Kang (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Young K. Ju (School of Civil, Environmental, and Architectural Engineering, Korea University)
  • 투고 : 2023.02.14
  • 심사 : 2023.03.17
  • 발행 : 2023.05.25

초록

Buildings, bridges, and dams are examples of civil infrastructure that play an important role in public life. These structures are prone to structural variations over time as a result of external forces that might disrupt the operation of the structures, cause structural integrity issues, and raise safety concerns for the occupants. Therefore, monitoring the state of a structure, also known as structural health monitoring (SHM), is essential. Owing to the emergence of the fourth industrial revolution, next-generation sensors, such as wireless sensors, UAVs, and video cameras, have recently been utilized to improve the quality and efficiency of building forensics. This study presents a method that uses a target-based system to estimate the dynamic displacement and its corresponding dynamic properties of structures using UAV-based video. A laboratory experiment was performed to verify the tracking technique using a shaking table to excite an SDOF specimen and comparing the results between a laser distance sensor, accelerometer, and fixed camera. Then a field test was conducted to validate the proposed framework. One target marker is placed on the specimen, and another marker is attached to the ground, which serves as a stationary reference to account for the undesired UAV movement. The results from the UAV and stationary camera displayed a root mean square (RMS) error of 2.02% for the displacement, and after post-processing the displacement data using an OMA method, the identified natural frequency and damping ratio showed significant accuracy and similarities. The findings illustrate the capabilities and reliabilities of the methodology using UAV to evaluate the dynamic properties of structures.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1A5A1032433).

참고문헌

  1. Alemayehu, R.W., Jung, S., Bae, J., Lee, C.H. and Ju, Y.K. (2021), "Tapered reduced deep beam connection for long span steel moment frames", Eng. Struct., 244, 112731. https://doi.org/10.1016/j.engstruct.2021.112731.
  2. Bae, J., Jang, A., Park, M.J., Lee, J. and Ju, Y.K. (2022), "Assessment of concrete macrocrack depth using infrared thermography", Steel Compos. Struct., 43(4), 501-509. https://doi.org/10.12989/scs.2022.43.4.501.
  3. Bae, J., Lee, J., Jang, A., Ju, Y.K. and Park, M.J. (2022), "SMART SKY Eye system for preliminary structural safety assessment of buildings using unmanned aerial vehicles", Sensors, 22(7), 2762. https://doi.org/10.3390/s22072762.
  4. Bouguet, J.Y. (2022), Camera Calibration Toolbox for Matlab (1.0), CaltechDATA. https://doi.org/10.22002/D1.20164.
  5. Chen, G., Liang, Q., Zhong, W., Gao, X. and Cui, F. (2021), "Homography-based measurement of bridge vibration using UAV and DIC method", Measure., 170, 108683. https://doi.org/10.1016/j.measurement.2020.108683.
  6. De Moor, B., Van Overschee, P. and Suykens, J. (1991), "Subspace algorithms for system identification and stochastic realization", Proceedings MTNS, Kobe, Japan. Janurary.
  7. Dong, C.Z. and Catbas, F.N. (2021), "A review of computer vision-based structural health monitoring at local and global levels", Struct. Health Monit., 20(2), 692-743. https://doi.org/10.1177/1475921720935585.
  8. Dong, C.Z., Celik, O. and Catbas, F.N. (2019), "Marker-free monitoring of the grandstand structures and modal identification using computer vision methods", Struct. Health Monit., 18(5-6), 1491-1509. https://doi.org/10.1177/1475921720935585.
  9. Garrido-Jurado, S., Munoz-Salinas, R., Madrid-Cuevas, F.J. and Marin-Jimenez, M.J. (2014), "Automatic generation and detection of highly reliable fiducial markers under occlusion", Pattern Recognit., 47(6), 2280-2292. https://doi.org/10.1016/j.patcog.2014.01.005.
  10. Hallermann, N. and Morgenthal, G. (2013), "Unmanned aerial vehicles (UAV) for the assessment of existing structures", IABSE Symposium Report, 101(14), 1-8. https://doi.org/10.2749/222137813808627172
  11. Han, Y., Wu, G. and Feng, D. (2022), "Vision-based displacement measurement using an unmanned aerial vehicle", Struct. Control Health Monit., 29(10), e3025. https://doi.org/10.1002/STC.3025.
  12. In, C.W., Schempp, F., Kim, J.Y. and Jacobs, L.J. (2015), "A fully non-contact, air-coupled ultrasonic measurement of surface breaking cracks in concrete", J. Nondestruct. Eval., 34(1), 272. https://doi.org/10.1007/s10921-014-0272-6.
  13. Jahanshahi, M.R. and Masri, S.F. (2013), "A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation", Smart Mater. Struct., 22(3), 035019. https://doi.org/10.1088/0964-1726/22/3/035019.
  14. Jang, A., Ju, Y.K. and Park, M.J. (2022), "Structural stability evaluation of existing buildings by reverse engineering with 3D laser scanner", Remote Sens., 14(10), 2325. https://doi.org/10.3390/rs14102325.
  15. Kalal, Z., Mikolajczyk, K. and Matas, J. (2010), "Forward-backward error: Automatic detection of tracking failures", 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, August.
  16. Khaloo, A., Lattanzi, D., Cunningham, K., Dell'Andrea, R. and Riley, M. (2018), "Unmanned aerial vehicle inspection of the placer river trail bridge through image-based 3D modelling", Struct. Infrastruct. Eng., 14(1), 124-136. https://doi.org/10.1080/15732479.2017.1330891.
  17. Khuc, T., Nguyen, T.A., Dao, H. and Catbas, F.N. (2020), "Swaying displacement measurement for structural monitoring using computer vision and an unmanned aerial vehicle", Measure., 159, 107769. https://doi.org/10.1016/j.measurement.2020.107769.
  18. Liu, D., Xia, X., Chen, J. and Li, S. (2020), "Integrating building information model and augmented reality for drone-based building inspection", J. Comput. Civil Eng., 35(2), 04020073. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000958.
  19. Mader, D., Blaskow, R., Westfeld, P. and Weller, C. (2016), "Potential of UAV-based laser scanner and multispectral camera data in building inspection", Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 41, 1135. https://doi.org/10.5194/isprsarchives-XLI-B1-1135-2016.
  20. Nasimi, R., Asce, S.M., Moreu, F. and Asce, M. (2021), "Development and implementation of a laser-camera-UAV system to measure total dynamic transverse displacement", J. Eng. Mech., 147(8), 04021045. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001939.
  21. O'Riordan-Adjah, C.A. and MacKenzie, A.W. (2019), "Investigating unmanned aerial vehicles (UAVs) for vertical structural inspection and analysis", Proceedings of the International Conference on Sustainable Infrastructure 2019, Los Angeles, CA, USA, November.
  22. OpenCV (2015), Detection of ArUco Markers, Open-Source Computer Vision. https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html.
  23. Park, B.J., Lee, Y.J., Park, M.J. and Ju, Y.K. (2018), "Vibration control of a structure by a tuned liquid column damper with embossments", Eng. Struct., 168, 290-299. https://doi.org/10.1016/J.ENGSTRUCT.2018.04.074.
  24. Park, M.J. and Ju, Y.K. (2022), "Disaster assessment of tall buildings in Korea by K-rapid visual screening system focusing on structural safety", Build., 12(4), 442. https://doi.org/10.3390/buildings12040442.
  25. Park, M.J., Kim, J., Jeong, S., Jang, A., Bae, J. and Ju, Y.K. (2022), "Machine learning-based concrete crack depth prediction using thermal images taken under daylight conditions", Remote Sens., 14(9), 2151. https://doi.org/10.3390/rs14092151.
  26. Puente, I., Lindenbergh, R., Van Natijne, A., Esposito, R. and Schipper, R. (2018), "Monitoring of progressive damage in buildings using laser scan data", Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 42, 923-929. https://doi.org/10.5194/isprs-archives-XLII-2-923-2018.
  27. Qin, S., Kang, J. and Wang, Q. (2016), "Operational modal analysis based on subspace algorithm with an improved stabilization diagram method", Shock Vib., 2016, 1. https://doi.org/10.1155/2016/7598965.
  28. Rainieri, C. and Fabbrocino, G. (2008), "Operational modal analysis: overview and applications", Strategies for Reduction of the Seismic Risk, Structural and Geotechnical Dynamic Laboratory StreGa, University of Molise, Termoli, Italy.
  29. Rainieri, C. and Fabbrocino, G. (2014), Operational Modal Analysis of Civil Engineering Structures, Springer, New York, NY, USA.
  30. Raja, B.N.K., Miramini, S., Duffield, C., Sofi, M., Mendis, P. and Zhang, L. (2020), "The influence of ambient environmental conditions in detecting bridge concrete deck delamination using infrared thermography (IRT)", Struct. Control Health Monit., 27(4), e2506. https://doi.org/10.1002/stc.2506.
  31. Ribeiro, D., Santos, R., Cabral, R., Saramago, G., Montenegro, P., Carvalho, H. and Calcada, R. (2021), "Non-contact structural displacement measurement using unmanned aerial vehicles and video-based systems", Mech. Syst. Signal Pr., 160, 107869. https://doi.org/10.1016/j.ymssp.2021.107869.
  32. Ryu, J., Kim, Y.Y., Park, M.W., Yoon, S.W., Lee, C.H. and Ju, Y.K. (2018), "Experimental and numerical investigations of steel-polymer hybrid floor panels subjected to three-point bending", Eng. Struct., 175, 467-482. https://doi.org/10.1016/J.ENGSTRUCT.2018.08.030.
  33. Ryu, J., Lee, C.H., Oh, J., Yoon, S.W. and Ju, Y.K. (2016), "Shear resistance of a biaxial hollow composite floor system with GFRP plates", J. Struct. Eng., 143(2), 04016180. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001657.
  34. Sivasuriyan, A., Vijayan, D.S., Gorski, W., Wodzynski, L., Vaverkova, M.D. and Koda, E. (2021), "Practical implementation of structural health monitoring in multi-story buildings", Build., 11(6), 263. https://doi.org/10.3390/buildings11060263.
  35. Sony, S., Laventure, S. and Sadhu, A. (2019), "A literature review of next-generation smart sensing technology in structural health monitoring", Struct. Control Health Monit., 26(3), e2321. https://doi.org/10.1002/stc.2321.
  36. Su, T.C. (2020), "Assessment of cracking widths in a concrete wall based on tir radiances of cracking", Sensors, 20(17), 4980. https://doi.org/10.3390/s20174980.
  37. Tomasi, C. and Kanade, T. (1991), "Detection and tracking of point", Int. J. Comput. Vis., 9, 137-154. https://doi.org/10.1007/BF00129684
  38. Wu, Z., Chen, G., Ding, Q., Yuan, B. and Yang, X. (2021), "Three-dimensional reconstruction-based vibration measurement of bridge model using UAVs", Appl. Sci., 11(11), 5111. https://doi.org/10.3390/app11115111.
  39. Yamaguchi, K. (2015), Mexopencv, Collection and a Development Kit of Matlab Mex Functions for OpenCV Library, https://github.com/kyamagu/mexopencv.
  40. Yoon, H., Hoskere, V., Park, J.W. and Spencer Jr, B.F. (2017), "Cross-correlation-based structural system identification using unmanned aerial vehicles", Sensors, 17(9), 2075. https://doi.org/10.3390/s17092075.
  41. Zhang, Z. (2000), "A flexible new technique for camera calibration", IEEE Trans. Pattern Anal. Mach. Intell., 22(11), 1330-1334. https://doi.org/10.1109/34.888718.