DOI QR코드

DOI QR Code

Bearing capacity at the pile tip embedded in rock depending on the shape factor and the flow

  • Ana S. Alencar (ETSI Caminos, C. y P., Universidad Politecnica de Madrid) ;
  • Ruben A. Galindo (ETSI Caminos, C. y P., Universidad Politecnica de Madrid) ;
  • Miguel A. Millan (ETS Arquitectura. Universidad Politecnica de Madrid)
  • 투고 : 2022.12.10
  • 심사 : 2023.02.24
  • 발행 : 2023.05.25

초록

This is a research analyses on the bearing capacity at a pile tip embedded in rock. The aim is to propose a shape coefficient for an analytical solution and to investigate the influence of the plastic flow law on the problem. For this purpose, the finite difference method is used to analyze the bearing capacity of various types and states of rock masses, assuming the Hoek & Brown failure criterion, by considering both plane strain and an axisymmetric model. Different geometrical configurations were adopted for this analysis. First, the axisymmetric numerical results were compared with those obtained from the plane strain analytical solution. Then the pile shape influence on the bearing capacity was studied. A shape factor is now proposed. Furthermore, an evaluation was done on the influence of the plastic flow law on the pile tip bearing capacity. Associative flow and non-associative flow with null dilatancy were considered, resulting in a proposed correlation. A total of 324 cases were simulated, performing a sensitivity analysis on the results and using the graphic output of vertical displacement and maximum principal stress to understand how the failure mechanism occurs in the numerical model.

키워드

참고문헌

  1. Alejano, L. and Alonso, E. (2005), "Considerations of the dilatancy angle in rocks and rock masses", Int. J. Rock Mech. Min. Sci., 42. 481-507. https://10.1016/j.ijrmms.2005.01.003. 
  2. Alencar, A., Galindo, R.A. and Melentijevic, S. (2019), "Bearing capacity of foundation on rock mass depending on footing shape and interface roughness", Geomech. Eng., 18(4), 391-406. https://doi.org/10.12989/gae.2019.18.4.391. 
  3. Carter, J.P. and Kulhawy, F.H. (1988), "Analysis and design of drilled shaft foundation socketed into rock", Report EL-5918; Electric Power Research Institute, Palo Alto, CA, USA. 
  4. Chen, H. and Zhang, L. (2022), "A machine learning‑based method for predicting end‑bearing capacity of rock‑socketed shafts", Rock Mech. Rock Eng., 55(3), 1743-1757. https://doi.org/10.1007/s00603-021-02757-9. 
  5. Coates, D.F. (1967), "Rock mechanics principles", Department of Energy, Mines and Resources, Mines Branch, Queen's printer, Ottawa, Canada. 
  6. De Beer, E.E. (1970), "Experimental determination of the shape factors and the bearing capacity factors of sand", Geotech., 20, 387-411. https://doi.org/10.1680/geot.1970.20.4.387. 
  7. FLAC (2007), User's Manual, Itasca Consulting Group Inc., Minneapolis, MN, USA. 
  8. Hoek, E. (1983), "Strength of jointed rock masses", Geotech., 33(3), 187-222. https://doi.org/10.1680/geot.1983.33.3.187. 
  9. Hoek, E. and Brown, E.T. (1988), "The Hoek-Brown failure criterion - A 1988 update", Proceedings of the Canadian Rock Mechanics Symposium, Ontario, Canada, June. 
  10. Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock. Mech. Min. Sci., 34, 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X. 
  11. Hoek, E., Carranza-Torres, C. and Corkum, B. (2002) "Hoek-Brown failure criterion - 2002 Edition", Proc. NARMS-Tac, 1(1), 267-273. 
  12. Kulhawy, F.H. and Goodman, R.E. (1980), "Design of foundations on discontinuous rock", International Conference on Structural Foundations on Rock, Sydney, Australia, May. 
  13. Ma, G., Chang, X.L., Zhou, W. and Ng, T.T. (2014), "Mechanical response of rockfills in a simulated true triaxial test: A combined FDEM study", Geomech. Eng., 7(3), 317-333. http://doi.org/10.12989/gae.2014.7.3.000. 
  14. Melentijevic, S., Serrano, A., Olalla, C. and Galindo, R.A. (2017), "Incorporation of non-associative flow rules into rock slope stability analysis", Int. J. Rock Mech. Min. Sci., 96, 47-57. http://doi.org/10.1016/j.ijrmms.2017.04.010. 
  15. Meyerhof, G.G. (1951), "The ultimate bearing capacity of foundations", Geotech., 2(4), 301-321.  https://doi.org/10.1680/geot.1951.2.4.301
  16. O'Neill, M.W. and Reese, L.C. (1999), "Drilled shafts: Construction procedures and design methods", FHWA Publication No. FHWA-IF-99-025; Department of Transportation, Federal Highway Administration, McLean, VA, USA. 
  17. Pells, P.J. (1977), "Theoretical and model studies related to the bearing capacity of rock", Sydney Group of Australian Geomechanics Society. 
  18. Picardo, A., Millan, M.A., Galindo, R.A. and Alencar, A. (2022), "Revisiting the analytical solutions for ultimate bearing capacity of pile embedded in rocks", J. Rock Mech. Geotech. Eng., 2022, 1-12. http://doi.org/10.1016/j.jrmge.2022.11.012. 
  19. Rahjoo, M. and Eberhardt, E. (2016), "A simplified dilation model for modeling the inelastic behavior of rock", 50th US Rock Mechanics/Geomechanics Symposium, Houston, TX, USA, June. 
  20. Rowe, R.K. and Armitage, H.H. (1987), "A design method for drilled piers in soft rock", Can. Geotech. J., 24(1), 126-142. http://doi.org/doi.org/10.1139/t87-011. 
  21. Serrano, A. and Olalla, C. (2002a), "Ultimate bearing capacity at the tip of a pile in rock - Part 1: Theory", Int. J. Rock Mech. Min. Sci., 39, 833-846. http://doi.org/10.1016/S1365-1609(02)00052-7. 
  22. Serrano, A. and Olalla, C. (2002b), "Ultimate bearing capacity at the tip of a pile in rock - Part 2: Application", Int. J. Rock Mech. Min. Sci., 39, 847-866. http://doi.org/10.1016/S1365-1609(02)00053-9. 
  23. Serrano, A., Olalla, C. and Galindo, R.A. (2014), "Ultimate bearing capacity at the tip of a pile in rock based on the modified Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 71, 83-90. http://doi.org/10.1016/j.ijrmms.2014.07.006. 
  24. Serrano, A., Olalla, C. and Juarez, F. (2010), "Cargas de hundimiento por punta de pilotes en roca: Estudio comparativo", Ingenieria Civil, 1(160), 1-34. 
  25. Serrano, A., Olalla, C. and Reig, I. (2011), "Convergence of circular tunnels in elastoplastic rock masses with non-linear failure criteria and non-associated flow laws", Int. J. Rock Mech. Min. Sci., 48, 878-887. http://doi.org/10.1016/j.ijrmms.2011.06.008. 
  26. Sokolovskiim, V.V. (1965), Statics of Soil Media, Butterworths Science (Translator R. Jones & A. Schofield), London, UK. 
  27. Teng, W.C. (1962), Foundation Design, Prentice-Hall Inc., Englewood Cliffs, NJ, USA. 
  28. Vermeer, P.A. and De Borst, R. (1984), "Non associated plasticity for soils, concrete and rock", Heron, 29(3), 3-64. 
  29. Vipulanandan, C., Hussain, A. and Usluogulari, O. (2007), "Parametric study of open core-hole on the behavior of drilled shafts socketed in soft rock", Proceedings of Geo-Denver 2007, Denver, CO, USA, February. 
  30. Wu, J., Feng, M., Ni, X., Mao, X., Chen, Z. and Han, G. (2019), "Aggregate gradation effects on dilatancy behavior and acoustic characteristic of cemented rockfill", Ultrasonics, 92, 79-92. http://doi.org/10.1016/j.ultras.2018.09.008. 
  31. Wu, J., Feng, M., Yu, B., Zhang, W., Ni, X. and Han, G. (2017), "Experimental investigation on dilatancy behavior of water-saturated sandstone", Int. J. Min. Sci. Technol., 28(2), 323-329. http://doi.org/10.1016/j.ijmst.2017.09.003. 
  32. Yang, X.L., Xu, J.S., Li, Y.X. and Yan, R.M. (2016), "Collapse mechanism of tunnel roof considering joined influences of nonlinearity and non-associated flow rule", Geomech. Eng., 10(1), 21-35. https://10.12989/gae.2016.10.1.021. 
  33. Zhang, L. (2009), "Considering the effect of discontinuities in the prediction of end bearing of rock socketed shafts", ISRM International Symposium on Rock Mechanics - SINOROCK 2009, Hong Kong, China, May. 
  34. Zhang, L. and Einstein, H.H. (1998), "End bearing resistance of drilled shafts in rock", J. Geotech. Geoenv. Eng., 124(7), 574-584.  https://doi.org/10.1061/(ASCE)1090-0241(1998)124:7(574)