DOI QR코드

DOI QR Code

Observation of reinforcing fibers in concrete upon bending failure by X-ray computed tomographic imaging

  • Seok Yong Lim (School of Civil and Environmental Engineering, Yonsei University) ;
  • Kwang Soo Youm (GS Construction & Engineering) ;
  • Kwang Yeom Kim (Department of Energy & Resources Engineering, Korea Maritime & Ocean University) ;
  • Yong-Hoon Byun (School of Agricultural Civil & Bio-Industrial Engineering, Kyungpook National University) ;
  • Young K. Ju (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Tae Sup Yun (School of Civil and Environmental Engineering, Yonsei University)
  • Received : 2023.02.06
  • Accepted : 2023.03.21
  • Published : 2023.05.25

Abstract

This study presents the visually observed behavior of fibers embedded in concrete samples that were subjected to a flexural bending test. Three types of fibers such as macro polypropylene, macro polyethylene, and the hybrid of steel and polyvinyl alcohol were mixed with cement by a designated mix ratio to prepare a total of nine specimens of each. The bending test was conducted by following ASTM C1609 with a net deflection of 2, 4, and 7 mm. The X-ray computed tomography (XCT) was carried out for 7 mm-deflection specimens. The original XCT images were post-processed to denoise the beam-hardening effect. Then, fiber, crack, and void were semi-manually segmented. The hybrid specimen showed the highest toughness compared to the other two types. Debonding based on 2D XCT sliced images was commonly observed for all three groups. The cement matrix near the crack surface often involved partially localized breakage in conjunction with debonding. The pullout was predominant for steel fibers that were partially slipped toward the crack. Crack bridging and rupture were not found presumably due to the image resolution and the level of energy dissipation for poly-fibers, while the XCT imaging was advantageous in evaluating the distribution and behavior of various fibers upon bending for fiber-reinforced concrete beam elements.

Keywords

Acknowledgement

The research described in this paper was financially supported in part by the National Research Foundation of Korea (NRF) grant fund by the Korea government(MSIT) (No. NRF- 2021R1A5A1032433) and in part by the Ministry of Land, Infrastructure, and Transport of the Korean government through the Railway Technology Research Program (RS-2021-KA163289).

References

  1. ACI Committee 544 (2016), Report on Indirect Method to Obtain Stress-strain Response of Fiber Reinforced Concrete (FRC), American Concrete Institute, Farmington Hills, MI, USA.
  2. ASTM C1609/1609M (2012), Standard Test Method for Flexural Performance of Fiber-reinforced Concrete (Using Beam with Third-point Loading), American Society for Testing and Materials, West Conshohocken, PA, USA.
  3. Abbas, Y.M. and Iqbal Khan, M. (2016), "Fiber-matrix interactions in fiber-reinforced concrete: A review", Arab. J. Sci., 41(4), 1183-1198. https://doi.org/10.1007/s13369-016-2099-1.
  4. Abdallah, S., Fan, M. and Rees, D.W.A. (2018), "Bonding mechanisms and strength of steel fiber-reinforced cementitious composites: Overview", J. Mater. Civil Eng., 30(3), https://doi.org/10.1061/(asce)mt.1943-5533.0002154.
  5. Afroughsabet, V., Biolzi, L. and Ozbakkaloglu, T. (2016), "High-performance fiber-reinforced concrete: A review", J. Mater. Sci., 51(14), 6517-6551. https://doi.org/10.1007/s10853-016-9917-4.
  6. Akca, K.R., Cakir, O. and Ipek, M. (2015), "Properties of polypropylene fiber reinforced concrete using recycled aggregates", Constr. Build. Mater., 98, 620-630. https://doi.org/10.1016/j.conbuildmat.2015.08.133.
  7. Alexander, M.G., Abbass, W., Khan, M.I., Beushausen, H., Dehn, F. and Moyo, P. (2018), "Mechanical properties of hybrid steel/PVA fibers reinforced high strength concrete", MATEC Web Conf., 199, 11005. https://doi.org/10.1051/matecconf/201819911005.
  8. Blazy, J. and Blazy, R. (2021), "Polypropylene fiber reinforced concrete and its application in creating architectural forms of public spaces", Case Stud. Constr. Mater., 14, e00549. https://doi.org/10.1016/j.cscm.2021.e00549.
  9. Bordelon, A.C. and Roesler, J.R. (2014), "Spatial distribution of synthetic fibers in concrete with X-ray computed tomography", Cement Concrete Compos., 53, 35-43. https://doi.org/10.1016/j.cemconcomp.2014.04.007.
  10. Celik, Z. and Bingol, A.F. (2019), "Mechanical properties and postcracking behavior of self-compacting fiber reinforced concrete", Struct. Concrete, 21(5), 2124-2133. https://doi.org/10.1002/suco.201900396.
  11. Chorzepa, M.G., Masud, M., Yaghoobi, A. and Jiang, H. (2017), "Impact test: Multi-scale fiber-reinforced concrete including polypropylene and steel fibers", ACI Struct. J., 114(6), 1429-1444. https://doi.org/10.14359/51700832.
  12. Chun, B. and Yoo, D.Y. (2019), "Hybrid effect of macro and micro steel fibers on the pullout and tensile behaviors of ultra-high-performance concrete", Compos. B. Eng., 162, 344-360. https://doi.org/10.1016/j.compositesb.2018.11.026.
  13. Chun, B., Yoo, D.Y. and Banthia, N. (2020), "Achieving slip-hardening behavior of sanded straight steel fibers in ultra-high-performance concrete", Cement Concrete Compos., 113, 103669. https://doi.org/10.1016/j.cemconcomp.2020.103669.
  14. Chung, S.Y., Han, T.S., Yun, T.S. and Youm, K.S. (2013), "Evaluation of the anisotropy of the void distribution and the stiffness of lightweight aggregates using CT imaging", Constr. Build. Mater., 48, 998-1008. https://doi.org/10.1016/j.conbuildmat.2013.07.082.
  15. Cunha, V.M.C.F., Barros, J.A.O. and Sena-Cruz, J.M. (2010), "Pullout behavior of steel fibers in self-compacting concrete", J. Mater. Civil Eng., 22(1), 1-9. https://doi.org/10.1061/(asce)mt.1943-5533.0000001.
  16. Deng, F., Cao, C., Xu, L. and Chi, Y. (2022), "Interfacial bond characteristics of polypropylene fiber in steel/polypropylene blended fiber reinforced cementitious composite", Constr. Build. Mater., 341, 127897. https://doi.org/10.1016/j.conbuildmat.2022.127897.
  17. Gray, R.J. (1984), "Analysis of the effect of embedded fibre length on fibre debonding and pull-out from an elastic matrix", J. Mater. Sci., 19(3), 861-870. https://doi.org/10.1007/bf00540456.
  18. Halvaei, M., Jamshidi, M. and Latifi, M. (2014), "Investigation on pullout behavior of different polymeric fibers from fine aggregates concrete", J. Ind. Text., 45(5), 995-1008. https://doi.org/10.1177/1528083714551437.
  19. Ismail, M.K., Hassan, A.A.A. and Lachemi, M. (2019), "Performance of self-consolidating engineered cementitious composite under drop-weight impact loading", J. Mater. Civil Eng., 31(3), 04018400. https://doi.org/10.1061/(asce)mt.1943-5533.0002619.
  20. Kang, D.H., Yun, T.S. and Kim, K.Y. (2012), "Image processing techniques relevant to geomaterials", The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM' 12), Seoul, Korea, August.
  21. Khaloo, A., Daneshyar, A., Rezaei, B. and Fartash, A. (2021), "Fiber bridging in polypropylene-reinforced high-strength concrete: An experimental and numerical survey", Struct. Concrete, 23(1), 457-472. https://doi.org/10.1002/suco.202000779.
  22. Li, L., Li, B., Wang, Z., Zhang, Z. and Alselwi, O. (2022), "Effects of hybrid PVA-steel fibers on the mechanical performance of high-ductility cementitious composites", Build., 12(11), 1934. https://doi.org/10.3390/buildings12111934.
  23. Macanovskis, A., Krasnikovs, A., Kononova, O. and Lukasenoks, A. (2017), "Mechanical behavior of polymeric synthetic fiber in the concrete", Procedia Eng., 172, 673-680. https://doi.org/10.1016/j.proeng.2017.02.079.
  24. Madjlessi, N., Cotsovos, D.M. and Moatamedi, M. (2021), "Drop-weight testing of slender reinforced concrete beams", Struct. Concrete, 22(4), 2070-2088. https://doi.org/10.1002/suco.202000395.
  25. Mindess, S. and Zhang, L. (2009), "Impact resistance of fibre-reinforced concrete", Proc. Inst. Civil Eng.: Struct. Build., 162(1), 69-76. https://doi.org/10.1680/stbu.2009.162.1.69.
  26. Mo, K.H., Yap, K.K.Q., Alengaram, U.J. and Jumaat, M.Z. (2014), "The effect of steel fibres on the enhancement of flexural and compressive toughness and fracture characteristics of oil palm shell concrete", Constr. Build. Mater., 55, 20-28. https://doi.org/10.1016/j.conbuildmat.2013.12.103.
  27. Moon, J., Youm, K.S., Lee, J.S. and Yun, T.S. (2022), "Flowability and mechanical characteristics of self-consolidating steel fiber reinforced ultra-high performance concrete", Steel Compos. Struct., 43(3), 389-401. https://doi.org/10.12989/scs.2022.43.3.389.
  28. Naaman, A.E., Namur, G.G., Alwan, J.M. and Najm, H.S. (1991a), "Fiber pullout and bond slip. I: Analytical study", J. Struct. Eng., 117(9), 2769-2790. https://doi.org/doi:10.1061/(ASCE)0733-9445(1991)117:9(2769).
  29. Naaman, A.E., Namur, G.G., Alwan, J.M. and Najm, H.S. (1991b), "Fiber pullout and bond slip. II: Experimental validation", J. Struct. Eng., 117(9), 2791-2800. https://doi.org/doi:10.1061/(ASCE)0733-9445(1991)117:9(2791).
  30. Narwal, J., Goel, A., Sharma, D., Kapoor, D.R. and Singh, B. (2013), "An experimental investigation on structural performance of steel fibre reinforced concrete beam", Int. J. Eng. Technol., 2(6), 301-304.
  31. Ochi, T., Okubo, S. and Fukui, K. (2007), "Development of recycled PET fiber and its application as concrete-reinforcing fiber", Cement Concrete Compos., 29(6), 448-455. https://doi.org/10.1016/j.cemconcomp.2007.02.002.
  32. Pakravan, H.R., Jamshidi, M. and Latifi, M. (2013), "Polymeric fibers pull-out behavior and microstructure as cementitious composites reinforcement", J. Text. Inst., 104(10), 1056-1064. https://doi.org/10.1080/00405000.2013.773124.
  33. Prasanna, P.K., Srinivasu, K. and Ramachandra Murthy, A. (2021), "Strength and durability of fiber reinforced concrete with partial replacement of cement by ground granulated blast furnace slag", Mater. Today: Proc., 47, 5416-5425. https://doi.org/10.1016/j.matpr.2021.06.267.
  34. Shah, A.A. and Ribakov, Y. (2011), "Recent trends in steel fibered high-strength concrete", Mater. Des., 32(8-9), 4122-4151. https://doi.org/10.1016/j.matdes.2011.03.030.
  35. Singh, S., Shukla, A. and Brown, R. (2004), "Pullout behavior of polypropylene fibers from cementitious matrix", Cement Concrete Res., 34(10), 1919-1925. https://doi.org/10.1016/j.cemconres.2004.02.014.
  36. Teng, S., Afroughsabet, V. and Ostertag, C.P. (2018), "Flexural behavior and durability properties of high performance hybrid-fiber-reinforced concrete", Constr. Build. Mater., 182, 504-515. https://doi.org/10.1016/j.conbuildmat.2018.06.158.
  37. Trainor, K.J., Foust, B.W. and Landis, E.N. (2013), "Measurement of energy dissipation mechanisms in fracture of fiber-reinforced ultrahigh-strength cement-based composites", J. Eng. Mech., 139(7), 771-779. https://doi.org/10.1061/(asce)em.1943-7889.0000545.
  38. Vicente, M.A., Minguez, J. and Gonzalez, D.C. (2019), "Computed tomography scanning of the internal microstructure, crack mechanisms, and structural behavior of fiber-reinforced concrete under static and cyclic bending tests", Int. J. Fatigue, 121, 9-19. https://doi.org/10.1016/j.ijfatigue.2018.11.023.
  39. Wille, K. and Naaman, A.E. (2012), "Pullout behavior of high-strength steel fibers embedded in ultra-high-performance concrete", ACI Mater. J., 109(4), 479-487.
  40. Wu, Z., Wei, Y., Wang, S. and Chen, J. (2020), "Application of X-ray micro-CT for quantifying degree of hydration of slag-blended cement paste", J. Mater. Civil Eng., 32(3), https://doi.org/10.1061/(asce)mt.1943-5533.0003082.
  41. Yoo, D.Y., Banthia, N., Kang, S.T. and Yoon, Y.S. (2016), "Effect of fiber orientation on the rate-dependent flexural behavior of ultra-high-performance fiber-reinforced concrete", Compos. Struct., 157, 62-70. https://doi.org/10.1016/j.compstruct.2016.08.023.
  42. Yoo, D.Y., Park, J.J. and Kim, S.W. (2017), "Fiber pullout behavior of HPFRCC: Effects of matrix strength and fiber type", Compos. Struct., 174, 263-276. https://doi.org/10.1016/j.compstruct.2017.04.064.
  43. Yoo, D.Y. and Banthia, N. (2019), "Impact resistance of fiber-reinforced concrete - A review", Cement Concrete Compos., 104, 103389. https://doi.org/10.1016/j.cemconcomp.2019.103389.
  44. Youm, K.S., Moon, J., Cho, J.Y. and Kim, J.J. (2016), "Experimental study on strength and durability of lightweight aggregate concrete containing silica fume", Constr. Build. Mater., 114, 517-527. https://doi.org/10.1016/j.conbuildmat.2016.03.165.
  45. Youm, K. and Moon, J. (2023), "Experimental study on impact behavior of concrete panel with and without polypropylene macrofibers", Build., 13(2), 303. https://doi.org/10.3390/buildings13020303.
  46. Youm, K.S., Jeong, Y.J., Han, E.S.H. and Yun, T.S. (2014), "Experimental investigation on annual changes in mechanical properties of structural concretes with various types of lightweight aggregates", Constr. Build. Mater., 73, 442-451. https://doi.org/10.1016/j.conbuildmat.2014.09.044.
  47. Yuan, T., Yang, J.M., Kim, K.D. and Yoon, Y.S. (2018), "Evaluating strength development and durability of high-strength concrete with 60% of ground-granulated blast furnace slag", J. Korean Soc. Hazard Mitig., 18(7), 307-314. https://doi.org/10.9798/kosham.2018.18.7.307.
  48. Zhao, Y., Bi, J., Sun, Y., Wang, Z., Huo, L. and Duan, Y. (2021), "Synergetic effect of ground granulated blast-furnace slag and hooked-end steel fibers on various properties of steel fiber reinforced self-compacting concrete", Struct. Concr., 23(1), 268-284. https://doi.org/10.1002/suco.202000722.