Acknowledgement
The research described in this paper was financially supported in part by the National Research Foundation of Korea (NRF) grant fund by the Korea government(MSIT) (No. NRF- 2021R1A5A1032433) and in part by the Ministry of Land, Infrastructure, and Transport of the Korean government through the Railway Technology Research Program (RS-2021-KA163289).
References
- ACI Committee 544 (2016), Report on Indirect Method to Obtain Stress-strain Response of Fiber Reinforced Concrete (FRC), American Concrete Institute, Farmington Hills, MI, USA.
- ASTM C1609/1609M (2012), Standard Test Method for Flexural Performance of Fiber-reinforced Concrete (Using Beam with Third-point Loading), American Society for Testing and Materials, West Conshohocken, PA, USA.
- Abbas, Y.M. and Iqbal Khan, M. (2016), "Fiber-matrix interactions in fiber-reinforced concrete: A review", Arab. J. Sci., 41(4), 1183-1198. https://doi.org/10.1007/s13369-016-2099-1.
- Abdallah, S., Fan, M. and Rees, D.W.A. (2018), "Bonding mechanisms and strength of steel fiber-reinforced cementitious composites: Overview", J. Mater. Civil Eng., 30(3), https://doi.org/10.1061/(asce)mt.1943-5533.0002154.
- Afroughsabet, V., Biolzi, L. and Ozbakkaloglu, T. (2016), "High-performance fiber-reinforced concrete: A review", J. Mater. Sci., 51(14), 6517-6551. https://doi.org/10.1007/s10853-016-9917-4.
- Akca, K.R., Cakir, O. and Ipek, M. (2015), "Properties of polypropylene fiber reinforced concrete using recycled aggregates", Constr. Build. Mater., 98, 620-630. https://doi.org/10.1016/j.conbuildmat.2015.08.133.
- Alexander, M.G., Abbass, W., Khan, M.I., Beushausen, H., Dehn, F. and Moyo, P. (2018), "Mechanical properties of hybrid steel/PVA fibers reinforced high strength concrete", MATEC Web Conf., 199, 11005. https://doi.org/10.1051/matecconf/201819911005.
- Blazy, J. and Blazy, R. (2021), "Polypropylene fiber reinforced concrete and its application in creating architectural forms of public spaces", Case Stud. Constr. Mater., 14, e00549. https://doi.org/10.1016/j.cscm.2021.e00549.
- Bordelon, A.C. and Roesler, J.R. (2014), "Spatial distribution of synthetic fibers in concrete with X-ray computed tomography", Cement Concrete Compos., 53, 35-43. https://doi.org/10.1016/j.cemconcomp.2014.04.007.
- Celik, Z. and Bingol, A.F. (2019), "Mechanical properties and postcracking behavior of self-compacting fiber reinforced concrete", Struct. Concrete, 21(5), 2124-2133. https://doi.org/10.1002/suco.201900396.
- Chorzepa, M.G., Masud, M., Yaghoobi, A. and Jiang, H. (2017), "Impact test: Multi-scale fiber-reinforced concrete including polypropylene and steel fibers", ACI Struct. J., 114(6), 1429-1444. https://doi.org/10.14359/51700832.
- Chun, B. and Yoo, D.Y. (2019), "Hybrid effect of macro and micro steel fibers on the pullout and tensile behaviors of ultra-high-performance concrete", Compos. B. Eng., 162, 344-360. https://doi.org/10.1016/j.compositesb.2018.11.026.
- Chun, B., Yoo, D.Y. and Banthia, N. (2020), "Achieving slip-hardening behavior of sanded straight steel fibers in ultra-high-performance concrete", Cement Concrete Compos., 113, 103669. https://doi.org/10.1016/j.cemconcomp.2020.103669.
- Chung, S.Y., Han, T.S., Yun, T.S. and Youm, K.S. (2013), "Evaluation of the anisotropy of the void distribution and the stiffness of lightweight aggregates using CT imaging", Constr. Build. Mater., 48, 998-1008. https://doi.org/10.1016/j.conbuildmat.2013.07.082.
- Cunha, V.M.C.F., Barros, J.A.O. and Sena-Cruz, J.M. (2010), "Pullout behavior of steel fibers in self-compacting concrete", J. Mater. Civil Eng., 22(1), 1-9. https://doi.org/10.1061/(asce)mt.1943-5533.0000001.
- Deng, F., Cao, C., Xu, L. and Chi, Y. (2022), "Interfacial bond characteristics of polypropylene fiber in steel/polypropylene blended fiber reinforced cementitious composite", Constr. Build. Mater., 341, 127897. https://doi.org/10.1016/j.conbuildmat.2022.127897.
- Gray, R.J. (1984), "Analysis of the effect of embedded fibre length on fibre debonding and pull-out from an elastic matrix", J. Mater. Sci., 19(3), 861-870. https://doi.org/10.1007/bf00540456.
- Halvaei, M., Jamshidi, M. and Latifi, M. (2014), "Investigation on pullout behavior of different polymeric fibers from fine aggregates concrete", J. Ind. Text., 45(5), 995-1008. https://doi.org/10.1177/1528083714551437.
- Ismail, M.K., Hassan, A.A.A. and Lachemi, M. (2019), "Performance of self-consolidating engineered cementitious composite under drop-weight impact loading", J. Mater. Civil Eng., 31(3), 04018400. https://doi.org/10.1061/(asce)mt.1943-5533.0002619.
- Kang, D.H., Yun, T.S. and Kim, K.Y. (2012), "Image processing techniques relevant to geomaterials", The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM' 12), Seoul, Korea, August.
- Khaloo, A., Daneshyar, A., Rezaei, B. and Fartash, A. (2021), "Fiber bridging in polypropylene-reinforced high-strength concrete: An experimental and numerical survey", Struct. Concrete, 23(1), 457-472. https://doi.org/10.1002/suco.202000779.
- Li, L., Li, B., Wang, Z., Zhang, Z. and Alselwi, O. (2022), "Effects of hybrid PVA-steel fibers on the mechanical performance of high-ductility cementitious composites", Build., 12(11), 1934. https://doi.org/10.3390/buildings12111934.
- Macanovskis, A., Krasnikovs, A., Kononova, O. and Lukasenoks, A. (2017), "Mechanical behavior of polymeric synthetic fiber in the concrete", Procedia Eng., 172, 673-680. https://doi.org/10.1016/j.proeng.2017.02.079.
- Madjlessi, N., Cotsovos, D.M. and Moatamedi, M. (2021), "Drop-weight testing of slender reinforced concrete beams", Struct. Concrete, 22(4), 2070-2088. https://doi.org/10.1002/suco.202000395.
- Mindess, S. and Zhang, L. (2009), "Impact resistance of fibre-reinforced concrete", Proc. Inst. Civil Eng.: Struct. Build., 162(1), 69-76. https://doi.org/10.1680/stbu.2009.162.1.69.
- Mo, K.H., Yap, K.K.Q., Alengaram, U.J. and Jumaat, M.Z. (2014), "The effect of steel fibres on the enhancement of flexural and compressive toughness and fracture characteristics of oil palm shell concrete", Constr. Build. Mater., 55, 20-28. https://doi.org/10.1016/j.conbuildmat.2013.12.103.
- Moon, J., Youm, K.S., Lee, J.S. and Yun, T.S. (2022), "Flowability and mechanical characteristics of self-consolidating steel fiber reinforced ultra-high performance concrete", Steel Compos. Struct., 43(3), 389-401. https://doi.org/10.12989/scs.2022.43.3.389.
- Naaman, A.E., Namur, G.G., Alwan, J.M. and Najm, H.S. (1991a), "Fiber pullout and bond slip. I: Analytical study", J. Struct. Eng., 117(9), 2769-2790. https://doi.org/doi:10.1061/(ASCE)0733-9445(1991)117:9(2769).
- Naaman, A.E., Namur, G.G., Alwan, J.M. and Najm, H.S. (1991b), "Fiber pullout and bond slip. II: Experimental validation", J. Struct. Eng., 117(9), 2791-2800. https://doi.org/doi:10.1061/(ASCE)0733-9445(1991)117:9(2791).
- Narwal, J., Goel, A., Sharma, D., Kapoor, D.R. and Singh, B. (2013), "An experimental investigation on structural performance of steel fibre reinforced concrete beam", Int. J. Eng. Technol., 2(6), 301-304.
- Ochi, T., Okubo, S. and Fukui, K. (2007), "Development of recycled PET fiber and its application as concrete-reinforcing fiber", Cement Concrete Compos., 29(6), 448-455. https://doi.org/10.1016/j.cemconcomp.2007.02.002.
- Pakravan, H.R., Jamshidi, M. and Latifi, M. (2013), "Polymeric fibers pull-out behavior and microstructure as cementitious composites reinforcement", J. Text. Inst., 104(10), 1056-1064. https://doi.org/10.1080/00405000.2013.773124.
- Prasanna, P.K., Srinivasu, K. and Ramachandra Murthy, A. (2021), "Strength and durability of fiber reinforced concrete with partial replacement of cement by ground granulated blast furnace slag", Mater. Today: Proc., 47, 5416-5425. https://doi.org/10.1016/j.matpr.2021.06.267.
- Shah, A.A. and Ribakov, Y. (2011), "Recent trends in steel fibered high-strength concrete", Mater. Des., 32(8-9), 4122-4151. https://doi.org/10.1016/j.matdes.2011.03.030.
- Singh, S., Shukla, A. and Brown, R. (2004), "Pullout behavior of polypropylene fibers from cementitious matrix", Cement Concrete Res., 34(10), 1919-1925. https://doi.org/10.1016/j.cemconres.2004.02.014.
- Teng, S., Afroughsabet, V. and Ostertag, C.P. (2018), "Flexural behavior and durability properties of high performance hybrid-fiber-reinforced concrete", Constr. Build. Mater., 182, 504-515. https://doi.org/10.1016/j.conbuildmat.2018.06.158.
- Trainor, K.J., Foust, B.W. and Landis, E.N. (2013), "Measurement of energy dissipation mechanisms in fracture of fiber-reinforced ultrahigh-strength cement-based composites", J. Eng. Mech., 139(7), 771-779. https://doi.org/10.1061/(asce)em.1943-7889.0000545.
- Vicente, M.A., Minguez, J. and Gonzalez, D.C. (2019), "Computed tomography scanning of the internal microstructure, crack mechanisms, and structural behavior of fiber-reinforced concrete under static and cyclic bending tests", Int. J. Fatigue, 121, 9-19. https://doi.org/10.1016/j.ijfatigue.2018.11.023.
- Wille, K. and Naaman, A.E. (2012), "Pullout behavior of high-strength steel fibers embedded in ultra-high-performance concrete", ACI Mater. J., 109(4), 479-487.
- Wu, Z., Wei, Y., Wang, S. and Chen, J. (2020), "Application of X-ray micro-CT for quantifying degree of hydration of slag-blended cement paste", J. Mater. Civil Eng., 32(3), https://doi.org/10.1061/(asce)mt.1943-5533.0003082.
- Yoo, D.Y., Banthia, N., Kang, S.T. and Yoon, Y.S. (2016), "Effect of fiber orientation on the rate-dependent flexural behavior of ultra-high-performance fiber-reinforced concrete", Compos. Struct., 157, 62-70. https://doi.org/10.1016/j.compstruct.2016.08.023.
- Yoo, D.Y., Park, J.J. and Kim, S.W. (2017), "Fiber pullout behavior of HPFRCC: Effects of matrix strength and fiber type", Compos. Struct., 174, 263-276. https://doi.org/10.1016/j.compstruct.2017.04.064.
- Yoo, D.Y. and Banthia, N. (2019), "Impact resistance of fiber-reinforced concrete - A review", Cement Concrete Compos., 104, 103389. https://doi.org/10.1016/j.cemconcomp.2019.103389.
- Youm, K.S., Moon, J., Cho, J.Y. and Kim, J.J. (2016), "Experimental study on strength and durability of lightweight aggregate concrete containing silica fume", Constr. Build. Mater., 114, 517-527. https://doi.org/10.1016/j.conbuildmat.2016.03.165.
- Youm, K. and Moon, J. (2023), "Experimental study on impact behavior of concrete panel with and without polypropylene macrofibers", Build., 13(2), 303. https://doi.org/10.3390/buildings13020303.
- Youm, K.S., Jeong, Y.J., Han, E.S.H. and Yun, T.S. (2014), "Experimental investigation on annual changes in mechanical properties of structural concretes with various types of lightweight aggregates", Constr. Build. Mater., 73, 442-451. https://doi.org/10.1016/j.conbuildmat.2014.09.044.
- Yuan, T., Yang, J.M., Kim, K.D. and Yoon, Y.S. (2018), "Evaluating strength development and durability of high-strength concrete with 60% of ground-granulated blast furnace slag", J. Korean Soc. Hazard Mitig., 18(7), 307-314. https://doi.org/10.9798/kosham.2018.18.7.307.
- Zhao, Y., Bi, J., Sun, Y., Wang, Z., Huo, L. and Duan, Y. (2021), "Synergetic effect of ground granulated blast-furnace slag and hooked-end steel fibers on various properties of steel fiber reinforced self-compacting concrete", Struct. Concr., 23(1), 268-284. https://doi.org/10.1002/suco.202000722.