DOI QR코드

DOI QR Code

Nonlinear modeling of beam-column joints in forensic analysis of concrete buildings

  • Nirmala Suwal (Department of Civil and Environmental Engineering, The University of Toledo) ;
  • Serhan Guner (Department of Civil and Environmental Engineering, The University of Toledo)
  • Received : 2023.01.05
  • Accepted : 2023.03.23
  • Published : 2023.05.25

Abstract

Beam-column joints are a critical component of reinforced concrete frame structures. They are responsible for transferring forces between adjoining beams and columns while limiting story drifts and maintaining structural integrity. During severe loading, beam-column joints deform significantly, affecting, and sometimes governing, the overall response of frame structures. While most failure modes for beam and column elements are commonly considered in plastic-hinge-based global frame analyses, the beam-column joint failure modes, such as concrete shear and reinforcement bond slip, are frequently omitted. One reason for this is the dearth of published guidance on what type of hinges to use, how to derive the joint hinge properties, and where to place these hinges. Many beam-column joint models are available in literature but their adoption by practicing structural engineers has been limited due to their complex nature and lack of practical application tools. The objective of this study is to provide a comparative review of the available beam-column joint models and present a practical joint modeling approach for integration into commonly used global frame analysis software. The presented modeling approach uses rotational spring models and is capable of modeling both interior and exterior joints with or without transverse reinforcement. A spreadsheet tool is also developed to execute the mathematical calculations and derive the shear stress-strain and moment-rotation curves ready for inputting into the global frame analysis. The application of the approach is presented by modeling a beam column joint specimen which was tested experimentally. Important modeling considerations are also presented to assist practitioners in properly modeling beam-column joints in frame analyses.

Keywords

Acknowledgement

The author would like to thank Mr. Prajwol Hada, a graduate student in the Department of Civil and Environmental Engineering at the University of Toledo, for his help with creating the figures and editing the references list.

References

  1. Abusafaqa, F.R., Samaaneh, M.A. and Dwaikat, M.B.M. (2022), "Improving ductility behavior of sway-special exterior beamcolumn joint using ultra-high-performance fiber-reinforced concrete", Struct., 36(12), 979-996. https://doi.org/10.1016/j.istruc.2021.12.059. 
  2. Alagundi, S. and Palanisamy, T. (2022), "Neural network prediction of joint shear strength of exterior beam-column joint", Struct., 37, 1002-1018. https://doi.org/10.1016/j.istruc.2022.01.013. 
  3. Alath, S. and Kunnath, S.K. (1995), "Modeling inelastic shear deformations in RC beam-column joints", Proceedings of 10th Conference, Boulder, CO, USA. 
  4. Alwanas, A.A.H., Al-Musawi, A.A, Salih, S.Q., Tao, H., Ali, M. and Yaseen, Z.M. (2019), "Load-carrying capacity and mode failure simulation of beam-column joint connection: Application of self-tuning machine leaning model", Eng. Struct., 194, 220-229. https://doi.org/10.1016/j.engstruct.2019.05.048. 
  5. Anderson, M., Lehman, D. and Stanton, J. (2008), "A cyclic shear stress-strain model for joints without transverse reinforcement", Eng. Struct., 30(4), 941-954. https://doi.org/10.1016/j.engstruct.2007.02.005. 
  6. Biddah, A. and Ghobarah, A. (1999), "Modelling of shear deformation and bond slip in reinforced concrete joints", Struct. Eng. Mech., 7(4), 413-32. https://doi.org/10.12989/sem.1999.7.4.413. 
  7. Birely, A.C., Lowes, L.N. and Lehman, D.E. (2012), "A model for the practical nonlinear analysis of reinforced-concrete frames including joint flexibility", Eng. Struct., 34(1), 455-465. https://doi.org/10.1016/-j.engstruct.2011.09.003. 
  8. Celik, O.C. and Ellingwood, B.R. (2008), "Modeling beamcolumn joints in fragility assessment of gravity load designed reinforced concrete frames", J. Earthq. Eng., 12(3), 357-381. https://doi.org/-10.1080/13632460701457215. 
  9. Clyde, C., Pantelides, C.P. and Reavely, L.D. (2000), "Performance-based evaluation of exterior reinforced concrete building joints for seismic excitation", PEER Report 2000; Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, CA, USA. 
  10. Computers and Structures, Inc. (2011), PERFORM-3DTM - Nonlinear Analysis and Performance Assessment for 3D Structures User's Guide Version 5, Computers and Structures, Inc., Berkeley, CA, USA. 
  11. Computers and Structures, Inc. (2016), ETABS - Integrated Building Design Software User's Guide, Computers and Structures Inc., Berkeley, CA, USA. 
  12. Computers and Structures, Inc. (2016), SAP2000 - Integrated Software for Structural Analysis and Design User's Manual Version 19, Computers and Structures, Inc., Berkeley, CA, USA. 
  13. De Risi, M.T., Ricci, P. and Verderame, G. (2017), "Modelling exterior unreinforced beam-column joints in seismic analysis of non-ductile RC frames", Earthq. Eng. Struct. Dyn., 46(6), 899-923. https://doi.org/10.1002/eqe.2835. 
  14. Eligehausen, R., Ozbolt, J., Genesio, G., Hoehler, M.S. and Pampanin, S. (2006), "Three-dimensional modeling of poorly detailed RC frame joints", Proceedings of the Annual NZSEE Conference, Napier, New Zealand. 
  15. Gao, X. and Lin, C. (2021), "Prediction model of the failure mode of beam-column joints using machine learning methods", Eng. Fail. Anal., 120, 105072. https://doi.org/10.1016/j.engfailanal.2020.105072. 
  16. Ghobarah, A. and Said, A. (2002), "Shear strengthening of beamcolumn joints", Eng. Struct., 24(7), 881-888. https://doi.org/10.1016/S0141-0296(02)00026-3. 
  17. Gombosuren, D. and Maki, T. (2020), "Prediction of joint shear deformation index of RC beam-column joints", Build., 10(10), 176. https://doi.org/10.3390/buildings10100176. 
  18. Grande, E., Imbimbo, M., Napoli, A., Nitiffi, R. and Realfonzo, R. (2021), "A nonlinear macro-model for the analysis of monotonic and cyclic behaviour of exterior RC beam-column joints", J. Build. Eng., 39, 16. https://doi.org/10.1016/j.jobe.2021.102202. 
  19. Guner, S. (2008), "Performance assessment of shear-critical reinforced concrete plane frames", Ph.D. Dissertation, University of Toronto, Toronto, Canada. 
  20. Guner, S. and Vecchio, F.J. (2008), User's manual of VecTor5, Department of Civil Engineering, University of Toronto, Toronto, Canada. 
  21. Guner, S. and Vecchio, F.J. (2011), "Analysis of shear-critical reinforced concrete plane frame elements under cyclic loading", J. Struct. Eng., 137(8), 834-84. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000346 
  22. Haido, J.H. (2022), "Prediction of the shear strength of RC beamcolumn joints using new ANN formulations", Struct., 38, 1191- 1209. https://doi.org/10.1016/j.istruc.2022.02.046. 
  23. Hassan, W.M. (2011), "Analytical and experimental assessment of the seismic vulnerability of beam-column joints without transverse reinforcement in concrete building", Ph.D. Dissertation, University of California, Berkeley, CA, USA. 
  24. Huang, G.B., Zhu, Q.Y. and Siew, C.K. (2006), "Extreme learning machine: theory and applications", Neurocomput., 70(1), 489-501. https://doi.org/10.1016/j.neucom.2005.12.126. 
  25. Jeon, J.S. (2013), "Aftershock vulnerability assessment of damaged reinforced concrete buildings in California", Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, USA. 
  26. Jeon, J.S., Lowes, L.N. and DesRoches, R. (2014), "Numerical models for beam-column joints in reinforced concrete building frames", ACI Spec. Publ., 6(3), 297-323. https://doi.org/10.14359/51686900. 
  27. Kotsovou, G.M., Cotsovos, D.M. and Lagaros, N.D. (2017), "Assessment of RC exterior beam-column joints based on artificial neural networks and other methods", Eng. Struct., 144, 1-18. https://doi.org/10.1016/j.engstruct.2017.04.048. 
  28. Lowes, L.N. and Altoontash, A. (2003), "Modeling reinforcedconcrete beam-column joints subjected to cyclic loading", J. Struct. Eng., 129(12), 1686-1697. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(1686). 
  29. Mangalathu, S. and Jeon, J.S. (2018), "Classification of failure mode and prediction of shear strength for reinforced concrete beam-column joints using machine learning techniques", Eng. Struct., 160, 85-94, https://doi.org/10.1016/j.engstruct.2018.01.008. 
  30. MIDAS (2021), MIDAS CIVIL - Analysis for Civil Structures, Analysis Reference, MIDASoft, Inc., New York, NY, USA. 
  31. Mitra, N. and Lowes, L.N. (2007), "Evaluation, calibration, and verification of a reinforced concrete beam-column joint model", J. Struct. Eng., 133(1), 105-120. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:1(105). 
  32. Murty, C.V.R, Rai, D., Bajpai, K.K. and Jain, S.K. (2003), "Effectiveness of reinforcement details in exterior reinforced concrete beam-column joints for earthquake resistance", ACI Struct. J., 100(2), 149-56. https://doi.org/10.14359/12478. 
  33. Naderpour, H. and Mirrashid, M. (2019), "Classification of failure modes in ductile and non-ductile concrete joints", Eng. Fail. Anal., 103, 361-375. https://doi.org/10.1016/j.engfailanal.2019.04.047. 
  34. Pan, Z., Guner, S. and Vecchio, F.J. (2017), "Modeling of interior beam-column joints for nonlinear analysis of reinforced concrete frames", Eng. Struct., 142(4), 182-191. https://doi.org/10.1016/j.engstruct.2017.03.066. 
  35. Pantelides, C.P., Hansen, J., Nadauld, J. and Reaveley, L.D. (2002), "Assessment of reinforced concrete building exterior joints with substandard details", PEER Report 2002/18; Pacific Earthquake Research Center, University of California, Berkeley, CA, USA. 
  36. Pantelides, C.P., Hansen, J., Nadauld, J. and Reaveley, L.D. (2017), "Seismic performance of reinforced concrete building exterior joints with substandard details", Int. J. Struct. Integr. Maint., 2(1), 1-11. https://doi.org/10.1080/24705314.2017.1280589. 
  37. Parisi, F. and Augenti, N. (2017), "Structural failure investigations through probabilistic nonlinear finite element analysis: Methodology and application", Eng. Fail. Anal., 80, 386-402. https://doi.org/10.1016/j.engfailanal.2017.07.004. 
  38. Park, S. (2010), "Experimental and analytical studies on old reinforced concrete buildings with seismically vulnerable beamcolumn joints", Ph.D. Dissertation, University of California, Berkeley, CA, USA. 
  39. Priestley, M.J.N. (1997), "Displacement based seismic assessment of reinforced concrete buildings", J. Earthq. Eng., 1(1), 157-192. https://doi.org/10.1080/13632469708962365. 
  40. RISA (2021), RISA-Rapid Interactive Structural Analysis General Reference Version 21, RISA Tech Inc., Foothill Ranch, CA, USA. 
  41. Sagbas, G., Vecchio, F.J. and Christopoulos, C. (2011), "Computational modeling of the seismic performance of beamcolumn subassemblies", J. Earthq. Eng., 15(4), 640-663. https://doi.org/10.1080/13632469.2010.508963. 
  42. Sasmal, S. and Nath, D. (2016), "Evaluation of performance of non-invasive upgrade strategy for beam-column subassemblages of poorly designed structures under seismic type loading", Earthq. Eng. Struct. Dyn., 45(11), 1817-1835. https://doi.org/10.1002/eqe.2730. 
  43. Sharma, A., Eligehausen, R. and Reddy, G.R. (2011), "A new model to simulate joint shear behavior of poorly detailed beamcolumn connections in RC structures under seismic load, Part I: Exterior Joints", Eng. Struct., 33(3), 1034-1051. https://doi.org/10.1016/j.engstruct.2010.12.026. 
  44. Sharma, A., Genesio, G., Reddy, G.R. and Eligehausen, R. (2009), "Nonlinear dynamic analysis using microplane model for concrete and bond slip model for prediction of behavior of nonseismically detailed RC beam-column joints", J. Struct. Eng., 36(4), 250-257. 
  45. Shin, M. and Lafave, J.M. (2004), "Modeling of cyclic joint shear deformation contributions in RC beam-column connections to overall frame behavior", Struct. Eng. Mech., 18(5), 645-669. https://doi.org/10.12989/sem.2004.18.5.645. 
  46. Suwal, N. and Guner, S. (2023a), "Beam-column joint hinge generator for shear and bond slip behaviors", Department of Civil and Environmental Engineering, University of Toledo, OH, USA. 
  47. Suwal, N. and Guner, S. (2023b), "User bulletin 10: Joint hinge generator for shear and bond slip behaviors", Department of Civil and Environmental Engineering, University of Toledo, OH, USA. 
  48. Tibshirani, R. (1996), "Regression shrinkage and selection via the lasso", J. Royal Stat. Soc. Ser. B (Methodol.), 58(1), 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x. 
  49. Thai, F.T. (2022), "Machine learning for structural engineering: A state-of-the-art review", Struct., 38(4), 448-491. https://doi.org/10.1016/j.istruc.2022.02.003. 
  50. Unal, M. and Burak, B. (2012), "Joint shear strength prediction of reinforced concrete beam-to-column connections", Struct. Eng. Mech., 41(3), 421-440. https://doi.org/10.12989/sem.2012.41.3.421. 
  51. Vecchio, F.J. and Collins, M.P. (1986), "Modified compressionfield theory for reinforced concrete elements subjected to shear", J. Am. Concrete Inst., 83(2), 219-231.  https://doi.org/10.14359/10416
  52. Vecchio, F.J. (2000), "Distributed stress model for reinforced concrete: Formulation", J. Struct. Eng., 126(8), 1070-1077. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1070). 
  53. Vecchio, F.J., Bentz, E.C. and Collins, M.P. (2004), "Tools for forensic analysis of concrete structures", Comput. Concrete, 1(1), 1-14. https://doi.org/10.12989/cac.2004.1.1.001. 
  54. Wong, P.S., Vecchio, F.J. and Trommels, H. (2013), "VecTor2 and formworks user's manual", Technical Report, Department of Civil Engineering, University of Toronto, ON, Canada. 
  55. Wu, X., Kumar, V., Ross, Q.J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P. and Zhou, Z.H. (2008), "Top 10 algorithms in data mining", Knowl. Inf. Syst., 14(1), 1-37. https://doi.org/10.1007/s10115-007-0114-2. 
  56. Youssef, M. and Ghobarah, A. (2001), "Modelling of RC beamcolumn joints and structural walls", J. Earthq. Eng., 5(1), 93-111. https://doi.org/10.1080/13632460109350387.