DOI QR코드

DOI QR Code

Effect of internal stability on the failure properties of gravel-sand mixtures

  • Zhongsen Li (LMPS, Paris-Saclay University, CentraleSupelec, ENS Paris-Saclay, CNRS) ;
  • Hanene Souli (LTDS, University of Lyon, CentraleLyon-ENISE, CNRS) ;
  • Jean-Marie Fleureau (LMPS, Paris-Saclay University, CentraleSupelec, ENS Paris-Saclay, CNRS) ;
  • Jean-Jacques Fry (Centre d'Ingenierie Hydraulique, Electricite de France) ;
  • Tariq Ouahbi (LOMC, Normandy University, CNRS) ;
  • Said Taibi (LOMC, Normandy University, CNRS)
  • Received : 2022.11.05
  • Accepted : 2023.01.25
  • Published : 2023.05.25

Abstract

The paper investigates the effect of two parameters - sand content (SC) and grain migration during shearing - on the mechanical properties of gravel-sand mixtures. Consolidated undrained (CU) triaxial tests were carried out on eight series of mixtures containing gravel (1<d<16 mm) and sand (0.1<d<1 mm). The prepared mixtures have sand contents of 0, 10, 15, 20, 40, 54, 94 and 100%, and a relative density of 60%. The transition sand content (TSC) is experimentally defined and marks the transition from gravel-driven to sand-driven behavior. For SC<TSC, the dry density of the mixture increases with SC. This induces an increase in undrained peak strength and dilative trend. The slope and position of the critical state line (CSL) are also deeply dependent on SC. At SC=TSC, the mixtures exhibit the largest dry density and yield the highest undrained peak strength and the largest dilative trend. During shearing, large internal migration of grains was observed at the TSC, causing heterogeneity in the sample. Analysis of the CSL deduced from the final points of the triaxial tests shows that, at the TSC, failure appears to correspond to the behavior of the coarsest fraction of the soil. This fraction is located in the upper part of the sample, where the sand particles had been eliminated by suffusion. On the other hand, in the more stable materials, the CSL is consistent with the bulk grain size distribution of the soil.

Keywords

Acknowledgement

The authors thank Electricite de France who financially supported this work.

References

  1. Andrianatrehina, L., Souli, H., Rech, J., Taibi, S., Fry, J.J., Ding, L. and Fleureau, J.M. (2016), "Analysis of the internal stability of coarse granular materials according to various criteria", Eur. J. Environ. Civil Eng., 20(8), 936-953. https://doi.org/10.1080/19648189.2015.1084385.
  2. Andrianatrehina, L., Souli, H., Rech, J., Taibi, S., Fry, J.J., Bunieski, S. and Fleureau, J.M. (2017), "Determination of the maximum diameter of free fines to assess the internal stability of coarse granular materials", Eur. J. Environ. Civil Eng., 21(3), 332-347. https://doi.org/10.1080/19648189.2015.1116468.
  3. ASTM D4254-00 (2006), Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density, American Society for Testing and Materials, West Conshohocken, PA, USA.
  4. ASTM D4253-00 (2006), Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table, American Society for Testing and Materials, West Conshohocken, PA, USA.
  5. Belkhatir, M., Arab, A., Missoum, H. and Schanz, T. (2010), "Influence of inter-granular void ratio on monotonic and cyclic undrained shear response of sandy soils", Comptes Rendus Mec., 338(5), 290-303. https://doi.org/10.1016/j.crme.2010.04.002.
  6. Biarez, J. and Hicher, P.Y. (1994), Elementary Mechanics of Soil Behaviour - Saturated Remoulded Soils, AA Balkema Publishers, Rotterdam, Netherlands.
  7. Cavarretta, I., Coop, M. and O'Sullivan, C. (2010), "The influence of particle characteristics on the behavior of coarse grained soils", Geotechnique, 60(6), 413-423. https://doi.org/10.1680/geot.2010.60.6.413.
  8. Chang, W.J. and Hong, M.L. (2008), "Effects of clay content on liquefaction characteristics of gap-graded clayey sands", Soil. Found., 48(1), 101-114. https://doi.org/10.3208/sandf.48.101.
  9. Chang, D., Zhang, L. and Cheuk, J. (2014), "Mechanical consequences of internal soil erosion", HKIE Transport., 21(4), 198-208. https://doi.org/10.1080/1023697X.2014.970746.
  10. Chang, W.J. and Phantchang, T. (2016), "Effect of gravel content on shear resistance of gravelly soils", Eng. Geol., 207, 78-90. https://doi.org/10.1016/j.enggeo.2016.04.015.
  11. Cubrinovski, M. and Ishihara, K. (2002), "Maximum and minimum void ratio characteristics of sands", Soil. Found., 42(6), 65-78. https://doi.org/10.3208/sandf.42.6_65.
  12. Dash, H.K., Sitharam, T.G. and Baudet, B.A. (2010), "Influence of non-plastic sands on the response of a silty sand to cyclic loading", Soil. Found., 50(5), 695-704. https://doi.org/10.3208/sandf.50.695.
  13. Dash, H.K. and Sitharam, T.G. (2011), "Undrained monotonic response of sand-silt mixtures: Effect of nonplastic fines", Geomech. Geoeng., 6(1), 47-58. https://doi.org/10.1080/17486021003706796.
  14. Emdadul, K.M. and Jahangir, A.M. (2014), "Effect of non-plastic silt content on the liquefaction behavior of sand-silt mixture", Soil Dyn. Earthq. Eng., 65(1), 142-150. https://doi.org/10.1016/j.soildyn.2014.06.010.
  15. Georgiannou, V.N. (2006), "The undrained response of sands with additions of particles of various shape and sizes", Geotechnique, 56(9), 639-649. https://doi.org/10.1680/geot.2006.56.9.639.
  16. Hariprasad, C., Rajashekhar, M. and Umashanker, B. (2016), "Preparation of uniform sand specimens using stationary pluviation and vibratory methods", Geotech. Geol. Eng., 34, 1909-1922. https://doi.org/10.1007/s10706-16-0064-0.
  17. Hicher, P.Y. (2012), "Modelling the behaviour of soil subjected to internal erosion", Proceedings of the 6th Conference on Scour and Erosion, Paris, France, August.
  18. Hoeg, K., Dyvik, R. and Sandbaekken, G. (2000), "Strength of undisturbed versus reconstituted silt and silty sand specimens", J. Geotech. Geoenviron. Eng., 126(7), 606-617. https://doi.org/10.1061/(ASCE)1090241(2000)126:7(606).
  19. Hsiao, D.H., Phan, V.T.A., Hsieh, Y.T. and Kuo, H.Y. (2015), "Engineering behavior and correlated parameters from obtained results of sand-silt mixtures", Soil Dyn. Earthq. Eng., 77, 137-151. https://doi.org/10.1016/j.soildyn.2015.05.005.
  20. Hubler, J.F., Athanasopoulos, A. and Zekkos, D. (2018), "Monotonic and cyclic simple shear response of gravel-sand mixtures", Soil Dyn. Earthq. Eng., 115, 291-304. https://doi.org/10.1016/j.soildyn.2018.07.016.
  21. Ke, L. and Takahashi, A. (2014), "Triaxial erosion test for evaluation of mechanical consequences of internal erosion", Geotech. Test. J., 37(2), 347-364. https://doi.org/10.1520/GTJ20130049.
  22. Ke, L. and Takahashi, A. (2015), "Drained monotonic responses of suffusional cohesionless soils", J. Geotech. Geoenviron. Eng., 141(8), 04015033. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001327.
  23. Kenney, T.C. and Lau, D. (1985), "Internal stability of granular filters", Can. Geotech. J., 22(2), 215-225. https://doi.org/10.1139/t85-029.
  24. Kenney, T.C. and Lau, D. (1986), "Internal stability of granular filters: Reply", Can. Geotech. J., 23(3), 420-423. https://doi.org/10.1139/t86-068.
  25. Kokusho, T., Hara, T. and Hiraoka, R. (2004), "Undrained shear strength of granular soils with different particle graduations", J. Geotech. Geoenviron. Eng., 130(6), 621-629. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:6(621).
  26. Lade, P., Liggio, C. and Yamamuro, J. (1998), "Effects of non-plastic sands on minimum and maximum void ratios of sand", Geotech. Test. J., 21(4), 336-347. https://doi.org/10.1520/GTJ11373J.
  27. Liu, Y.J., Li, G., Yin, Z.Y., Dano, C., Hicher, P.Y., Xia, X.H. and Wanga, J.H. (2014), "Influence of grading on the undrained behavior of granular materials", Comptes Rendus Mec., 342(2), 85-95. https://doi.org/10.1016/j.crme.2013.11.001.
  28. Li, Z.S., Rahayu, W., Souli, H., Soepandji, B.S. and Fleureau, J.M. (2022), "Compressibility and shear strength of a tropical fibrous peat", Geotech. Lett., 12(2), 1-9. https://doi.org/10.1680/jgele.21.00154.
  29. Mehdizadeh, A., Disfani, M.M., Evans, R. and Arulrajah, A. (2018), "Progressive internal erosion in a gap-graded internally unstable soil: Mechanical and geometrical effects", Int. J. Geomech., 18(3), 04017160. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001085.
  30. Monkul, M.M. and Ozden, G. (2007), "Compressional behavior of clayey sand and transition sands content", Eng. Geol., 89(1-2), 195-205. https://doi.org/10.1016/j.enggeo.2006.10.001.
  31. Naeini, S.A. and Baziar, M.H. (2004), "Effect of sands content on steady state strength of mixed and layered samples of a sand", Soil Dyn. Earthq. Eng., 24(3), 181-187. https://doi.org/10.1016/j.soildyn.2003.11.003.
  32. NF P94-074 (1994), Sols : Reconnaissance et Essais Essais a L'appareil Triaxial de Revolution Appareillage - Preparation des Eprouvettes - Essai (UU) Non Consolide Non Draine - Essai (CU + u) Consolide Non Draine Avec Mesure de Pression Interstitielle - Essai (CD) Consolide Draine, Afnor Group, La Plaine Saint-Denis, France (in French).
  33. Ouyang, M. and Takahashi, A. (2015), "Influence of initial sands content on fabric of soils subjected to internal erosion", Can. Geotech. J., 53(2), 1-15. https://doi.org/10.1139/cgj-2014-0344.
  34. Papadopoulou, A. and Tika, T. (2008), "Effect of sands on critical state and liquefaction resistance characteristics of non-plastic silty sands", Soil. Found., 48(5), 713-725. https://doi.org/10.3208/sandf.48.713.
  35. Phan, V.T.A., Hsaio, D.H. and Nguyen, P.T.L. (2016), "Critical state line and parameters of sand sand mixtures", Procedia Eng., 142, 299-306. https://doi.org/10.1016/j.proeng.2016.02.045.
  36. Prasomsri, J. and Takahashi, A. (2020), "The role of fines on internal instability and its impact on undrained mechanical response of gap-graded soils", Soil. Found., 60(6), 1468-1488. https://doi.org/10.1016/j.sandf.2020.09.008.
  37. Rahmani, H. and Naeini, S.A. (2020), "Influence of non plasyic sand on static liquefaction and undrained monotonic behavior of sandy gravel", Eng. Geol., 275, 1-13. https://doi.org/10.1016/j.enggeo.2020.105729.
  38. Sadrekarimi, A. (2013), "Influence of state and compressibility on liquefied strength of sands", Can. Geotech. J., 50(10), 1067-1076. https://doi.org/10.1139/cgj-2012-0395.
  39. Scholtes, L., Hicher, P.Y. and Sibille, L. (2010), "Multiscale approaches to describe mechanical responses induced by particle removal in granular materials", Comptes Rendus Mec., 338(10-11), 627-638. https://doi.org/10.1016/j.crme.2010.10.003.
  40. Skempton, A.W. and Brogan, J.M. (1994), "Experiments on piping in sandy gravels", Geotechnique, 4(3), 449-460. https://doi.org/10.1680/geot.1994.44.3.449.
  41. Thevanayagam, S., Shenthan, T., Mohan, S. and Liang, J. (2002), "Undrained fragility of clean sands, silty sands, and sandy silts", J. Geotech. Geoenviron. Eng., 128(10), 849-859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849).
  42. Tsukamoto, Y., Kawabe, S., Matsumoto, J. and Hagiwara, S. (2014), "Cyclic resisitance of two unsaturated silty sands against soil liquefaction", Soil. Found., 56(6), 1094-1103. https://doi.org/10.1016/j.sandf.2014.11.005.
  43. Vahidi-Nia, F., Lashkari, A. and Binesh, S.M. (2015), "An insight into the mechanical behavior of binary granular soils", Particuol., 21(1), 82-89. https://doi.org/10.1016/j.partic.2014.11.006.
  44. Xiao, M. and Shwiyhat, N. (2012), "Experimental investigation of the effects of suffusion on physical and geomechanical characteristics of sandy soils", Geotech. Test. J., 35(6), 890-900. https://doi.org/10.1520/GTJ104594.
  45. Zlatovic, S. and Ishihara, K. (1995), "On the influence of nonplastic sands on residual strength", Proceedings of 1st International Conference on Earthquake Geotechnical Engineering, Tokyo, Japan, November.
  46. Zuo, L. and Baudet, B.A. (2015), "Determination of the transitional sands content of sand-non plastic sands mixtures", Soil. Found., 55(1), 213-219. https://doi.org/10.1016/j.sandf.2014.12.017.