DOI QR코드

DOI QR Code

Characterization of stacked geotextile tube structure using digital image correlation

  • Dong-Ju Kim (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Dong Geon Son (School of Agricultural Civil & Bio-Industrial Engineering, Kyungpook National University) ;
  • Jong-Sub Lee (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Thomas H.-K. Kang (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Tae Sup Yun (School of Civil and Environmental Engineering, Yonsei University) ;
  • Yong-Hoon Byun (School of Agricultural Civil & Bio-Industrial Engineering, Kyungpook National University)
  • Received : 2023.01.17
  • Accepted : 2023.03.21
  • Published : 2023.05.25

Abstract

Displacement is an important element for evaluating the stability and failure mechanism of hydraulic structures. Digital image correlation (DIC) is a useful technique to measure a three-dimensional displacement field using two cameras without any contact with test material. The objective of this study is to evaluate the behavior of stacked geotextile tubes using the DIC technique. Geotextile tubes are stacked to build a small-scale temporary dam model to exclude water from a specific area. The horizontal and vertical displacements of four stacked geotextile tubes are monitored using a dual camera system according to the upstream water level. The geotextile tubes are prepared with two different fill materials. For each dam model, the interface layers between upper and lower geotextile tubes are either unreinforced or reinforced with a cementitious binder. The displacement of stacked geotextile tubes is measured to analyze the behavior of geotextile tubes. Experimental results show that as upstream water level increases, horizontal and vertical displacements at each layer of geotextile tubes initially increase with water level, and then remain almost constant until the subsequent water level. The displacement of stacked geotextile tubes depends on the type of fill material and interfacial reinforcement with a cementitious binder. Thus, the proposed DIC technique can be effectively used to evaluate the behavior of a hydraulic structure, which consists of geotextile tubes.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1A5A1032433).

References

  1. Al-Hashimi, S.A., Madhloom, H.M., Khalaf, R.M., Nahi, T.N. and Al-Ansari, N.A. (2017), "Flow over broad crested weirs: Comparison of 2D and 3D models", J. Civil Eng. Arch., 11(8), 769-779. https://doi.org/10.17265/1934-7359/2017.08.005.
  2. Arshad, M.I., Tehrani, F.S., Prezzi, M. and Salgado, R. (2014), "Experimental study of cone penetration in silica sand using digital image correlation", Geotech., 64(7), 551-569. https://doi.org/10.1680/geot.13.P.179.
  3. Cantre, S. (2002), "Geotextile tubes - analytical design aspects", Geotext. Geomembr, 20(5), 305-319. https://doi.org/10.1016/S0266-1144(02)00029-8.
  4. Chen, F., Chen, X., Xie, X., Feng, X. and Yang, L. (2013), "Full-field 3D measurement using multi-camera digital image correlation system", Opt. Lasers Eng, 51(9), 1044-1052. https://doi.org/10.1016/j.optlaseng.2013.03.001.
  5. Chen, Y., Wei, J., Huang, H., Jin, W. and Yu, Q. (2018), "Application of 3D-DIC to characterize the effect of aggregate size and volume on non-uniform shrinkage strain distribution in concrete", Cement Concrete Compos., 86, 178-189. https://doi.org/10.1016/j.cemconcomp.2017.11.005.
  6. Ferrari, A. (2010), "SPH simulation of free surface flow over a sharp-crested weir", Adv. Water Resour., 33(3), 270-276. https://doi.org/10.1016/j.advwatres.2009.12.005.
  7. Hori, T., Mohri, Y. and Kohgo, Y. (2006), "Model test and deformation analysis for failure of a loose sandy embankment dam by seepage", Proceedings of the Fourth International Conference on Unsaturated Soils, Carefree, AZ, USA, April.
  8. Hori, T., Mohri, Y., Kohgo, Y. and Matsushima, K. (2011), "Model test and consolidation analysis of failure of a loose sandy embankment dam during seepage", Soils Found., 51(1), 53-66. https://doi.org/10.3208/sandf.51.53.
  9. ISO 12956: 1999 (1999), Geotextiles and Geotextile-Related Products-Determination of the Characteristic Opening Size, International Organization for Standardization, Genava, Switzerland.
  10. Jia, G.W., Zhan, T.L., Chen, Y.M. and Fredlund, D.G. (2009), "Performance of a large-scale slope model subjected to rising and lowering water levels", Eng. Geol., 106(1-2), 92-103. https://doi.org/10.1016/j.enggeo.2009.03.003.
  11. Jiang, L., Diao, M., Sun, H. and Ren, Y. (2018), "Numerical modeling of flow over a rectangular broad-crested weir with a sloped upstream face", Water, 10(11), 1663. https://doi.org/10.3390/w10111663.
  12. Khatami, H., Deng, A. and Jaksa, M. (2019), "An experimental study of the active arching effect in soil using the digital image correlation technique", Comput. Geotech, 108, 183-196. https://doi.org/10.1016/j.compgeo.2018.12.023.
  13. Kim, M., Moler, M., Freeman, M., Filz, G.M. and Plaut, R.H. (2005), "Stacked geomembrane tubes for flood control: Experiments and analysis", Geosynth. Int., 12(5), 253-259. https://doi.org/10.1680/gein.2005.12.5.253.
  14. Kim, H.J., Jamin, J.C. and Mission, J.L. (2013), "Finite element analysis of ground modification techniques for improved stability of geotubes reinforced reclamation embankments subjected to scouring", Proceedings of 2013 World Congress in Structural Engineering and Mechanics, Daejeon, Republic of Korea, November.
  15. Kim, H.J., Won, M.S. and Jamin, J.C. (2015), "Finite-element analysis on the stability of geotextile tube-reinforced embankments under scouring", Int. J. Geomech, 15(2), 06014019. http://doi.org/10.1061/(ASCE)GM.1943-5622.0000420.
  16. Kim, H.J., Won, M.S., Jamin, J.C. and Joo, J.H. (2016), "Numerical and field test verifications for the deformation behavior of geotextile tubes considering 1D and areal strain", Geotext. Geomembr, 44(2), 209-218. https://doi.org/10.1016/j.geotexmem.2015.09.004.
  17. Ko, Y., Seo, S., Jin, T. and Chung, M. (2021), "Feasibility evaluation of the 3D-DIC non contact measurement system using small-scaled model test of earth retaining wall", Int. J. Geo-Eng, 12(1), 1-11. https://doi.org/10.1186/s40703-021-00141-8.
  18. Khalilzad, M. and Gabr, M.A. (2011), "External stability of geotubes subjected to wave loading", Proceedings of GeoRisk 2011: Geotechnical Risk Assessment and Management, Atlanta, Georgia, USA, June.
  19. Kim, D.J., Kim, S.C., Lee, J.S., Byun, Y.H. and Kang, B.Y. (2022), "Internal strength characterization of geotextile tube using miniature cone", Ocean Eng., 266, 113157. https://doi.org/10.1016/j.oceaneng.2022.113157.
  20. Kirkgoz, M.S., Akoz, M.S. and Oner, A.A. (2008), "Experimental and theoretical analyses of two-dimensional flows upstream of broad-crested weirs", Can. J. Civil Eng., 35(9), 975-986. https://doi.org/10.1139/L08-036
  21. Krahn, T., Blatz, J., Alfaro, M. and Bathurst, R.J. (2007), "Large-scale interface shear testing of sandbag dyke materials", Geosynth. Int., 14(2), 119-126. https://doi.org/10.1680/gein.2007.14.2.119.
  22. Kriel, H.J. (2012), "Hydraulic stability of multi-layered sand-filled geotextile tube breakwaters under wave attack", Doctoral dissertation, Stellenbosch University, Stellenbosch, South Africa.
  23. Lawson, C.R. (2008), "Geotextile containment for hydraulic and environmental engineering", Geosynth. Int., 15(6), 384-427. https://doi.org/10.1680/gein.2008.15.6.384.
  24. Leshchinsky, D. and Leshchinsky, O. (1996), "Geosynthetic confined pressurized slurry (GeoCoPS): Supplemental notes for version 1.0", No. Interim Report; CGAR-GL-96-1, Geotechnical Laboratory (U.S), Engineer Research and Development Center, Vicksburg, MS, USA.
  25. Pan, B., Wu, D. and Yu, L. (2012), "Optimization of a three-dimensional digital image correlation system for deformation measurements in extreme environments", Appl. Opt., 51(19), 4409-4419. https://doi.org/10.1364/AO.51.004409.
  26. Pan, B., Yu, L. and Wu, D. (2014), "Accurate ex situ deformation measurement using an ultra-stable two-dimensional digital image correlation system", Appl. Opt., 53(19), 4216-4227. https://doi.org/10.1364/AO.53.004216.
  27. Pan, B. (2018), "Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals", Meas. Sci. Technol., 29(8), 082001. https://doi.org/10.1088/1361-6501/aac55b.
  28. Plaut, R.H. and Filz, G.M. (2008), "Deformations and tensions in single layer and stacked geosynthetic tubes", Proceedings of the 1st Pan American Geosynthetics Conference, Cancun, Mexico, March.
  29. Seay, P.A. (1998), "Finite element analysis of geotextile tubes", Doctoral Dissertation, Virginia Tech, Blacksburg, VA, USA.
  30. Shin, E.C., Kang, J.K., Kim, S.H. and Park, J.J. (2016), "Construction technology of environmental sustainable shore and harbor structures using stacked geotextile tube", KSCE J. Civil Eng. 20(6), 2095-2102. https://doi.org/10.1007/s12205-015-0792-3.
  31. Son, D.G. and Byun, Y.H. (2023), "Shear strength characteristics of two-layer geotextile reinforced with flowable fill", Constr. Build. Mater., 367, 130207. https://doi.org/10.1016/j.conbuildmat.2022.130207.
  32. Tong, B. and Yoo, C. (2022), "Application of digital image correlations (DIC) technique on geotechnical reduced-scale model tests", J. Korean Geosynth. Soc., 21(1), 33-48. https://doi.org/10.12814/jkgss.2022.21.1.033.
  33. Wang, P., Guo, X., Sang, Y., Shao, L., Yin, Z. and Wang, Y. (2020), "Measurement of local and volumetric deformation in geotechnical triaxial testing using 3D-digital image correlation and a subpixel edge detection algorithm", Acta Geotech., 15(10), 2891-2904. https://doi.org/10.1007/s11440-020-00975-z.
  34. Zhang, W. and Tan, J. (2006), "2-D finite element analysis and stability calculation of geotextile tubes", Proceedings of the 8th International Conference on Geosynthetics, Yokohama, Japan, September.