DOI QR코드

DOI QR Code

A simplified model proposal for non-linear analysis of buildings

  • Abdul Rahim Halimi (School of Graduate Studies, Canakkale Onsekiz Mart University) ;
  • Kanat Burak Bozdogan (Department of Civil Engineering, Faculty of Engineering, Canakkale Onsekiz Mart University)
  • Received : 2023.01.18
  • Accepted : 2023.04.07
  • Published : 2023.05.25

Abstract

In this study, a method has been proposed for the static and dynamic nonlinear analysis of multi-storey buildings, which takes into account the contribution of axial deformations in vertical load-bearing elements, which are especially important in tall and narrow structures. Shear deformations on the shear walls were also taken into account in the study. The presented method takes into account the effects that are not considered in the fishbone and flexural-shear beam models developed in the literature. In the Fishbone model, only frame systems are modeled. In the flexural shear beam model developed for shear wall systems, shear deformations and axial deformations in the walls are neglected. Unlike the literature, with the model proposed in this study, both shear deformations in the walls and axial deformations in the columns and walls are taken into account. In the proposed model, multi-storey building is represented as a sandwich beam consisting of Timoshenko beams pieced together with a double-hinged beam. At each storey, the total moment capacities of the frame beams and the coupled beams in the coupled shear walls are represented as the equivalent shear capacity. On the other hand, The sums of individual columns and walls moment at the relevant floor level are represented as equivalent moment capacity at that floor level. At the end of the study, examples were solved to show the suitability of the proposed method in this study. The SAP2000 program is employed in analyses. In a conclusion, it is observed that among the solved examples, the proposed sandwich beam model gives good results. As can be seen from these results, it is seen that the presented method, especially in terms of base shear force, gives very close results to the detailed finite element method.

Keywords

References

  1. Aydinoglu, M.N. (2003), "An incremental response spectrum analysis procedure based on inelastic spectral displacements for multi-mode seismic performance evaluation", Bull. Earthq. Eng., 1, 3-36. https://doi.org/10.1023/A:1024853326383.
  2. Baikov, V. and Sigalov, E. (1983), Reinforced Concrete Structures, MIR Publishers, Moscow, Russia.
  3. Balic, I., Trogrlic, B. and Mihanovic, A. (2017), "Simplified multimodal pushover target acceleration method for seismic resistance analysis of medium-rise RC structures", KSCE J. Civil Eng., 21, 378-388. https://doi.org/10.1007/s12205-016-0738-4.
  4. Behnamfar, F. and Tavakoli, B. (2021), "Developing a method for multi-modal shear-based pushover analysis", Asian J. Civil Eng., 22, 217-228. https://doi.org/10.1007/s42107-020-00308-1.
  5. Chopra, A.K. and Goel, R.K. (2002), "A modal pushover analysis procedure for estimating seismic demands for buildings", Earthq. Eng. Struct. Dyn., 31(3), 561-582. https://doi.org/10.1002/eqe.144.
  6. De Stefano, M. and Pintucchi, B. (2008), "A review of research on seismic behavior of irregular building structures since 2002", Bull. Earthq. Eng., 6, 285-308. https://doi.org/10.1007/s10518-007-9052-3.
  7. Ertutar, Y. (1995), "Calculation of shear stiffness of nonsymmetrical shear walls", Bull. Earthq. Res., 22(73), 40-45.
  8. Ferraioli, M. (2015), "Case study of seismic performance assessment of irregular RC buildings: Hospital structure of Avezzano (L'Aquila, Italy)", Earthq. Eng. Eng. Vib., 14, 141-156. https://doi.org/10.1007/s11803-015-0012-7.
  9. Ferraioli, M., Lavino, A. and Mandara, A. (2016), "An adaptive capacity spectrum method for estimating seismic response of steel moment-resisting frames", Int. J. Earthq. Eng., 33(1-2), 47-60.
  10. Ferraioli, M. (2017), "Multi-mode pushover procedure for deformation demand estimates of steel moment-resisting frames", Int. J. Steel Struct., 172(17), 653-676. https://doi.org/10.1007/S13296-017-6022-8.
  11. Franco, C., Chesnais, C., Semblat, J.F., Cedric, D. and Cedric, G. (2022), "Seismic analysis of tall buildings through an enriched equivalent beam model: Application to Grenoble City Hall", 3rd European Conference on Earthquake Engineering & Seismology Bucharest, Bucharest, Romania, September.
  12. Georgoussis, G.K. (2017), "Preliminary structural design of wallframe systems for optimum torsional response", Int. J. Concrete Struct. Mater., 11, 45-58. https://doi.org/10.1007/s40069-016-0183-2.
  13. Gunes, N. (2020), "Comparison of monotonic and cyclic pushover analyses for the near-collapse point on a mid-rise reinforced concrete framed building", Earthq. Struct., 19(3), 189-196. https://doi.org/10.12989/eas.2020.19.3.189.
  14. Gupta, B. and Kunnath, S.K. (2000), "Adaptive spectra-based pushover procedure for seismic evaluation of structures", Earthq. Spectra, 16, 367-391. https://doi.org/10.1193/1.1586117.
  15. Habibi, A., Gholami, R. and Izadpanah, M. (2019), "Behavior factor of vertically irregular RCMRFs based on incremental dynamic analysis", Earthq. Struct., 16(6), 655-664. https://doi.org/10.12989/eas.2019.16.6.655.
  16. Haghighat, A. and Sharifi, A. (2018), "Evaluation of modified fish-bone model for estimating seismic demands of irregular MRF structures", Period. Polytech. Civil Eng., 62(3), 800-811. https://doi.org/10.3311/PPci.11640.
  17. Hernandez-Montes, E., Kwon, O.S. and Aschheim, M. (2004), "An energy-based formulation for first and multiple-mode nonlinear static (pushover) analyses", J. Earth. Eng., 8(1), 69-88. https://doi.org/10.1080/13632460409350481.
  18. Jamsek, A. and Dolsek, M. (2020), "Seismic analysis of older and contemporary reinforced concrete frames with the improved fish-bone model", Eng. Struct., 212, 110514. https://doi.org/10.1016/j.engstruct.2020.110514.
  19. Kaatsiz, K. and Sucuoglu, H. (2014) "Generalized force vectors for multi-mode pushover analysis of torsionally coupled systems", Earthq. Eng. Struct. Dyn., 43, 2015-2033. https://doi.org/10.1002/eqe.2434.
  20. Kaviani, P., Rahgozar, R. and Saffari, H. (2008), "Approximate analysis of tall buildings using sandwich beam models with variable cross-section", Struct. Des. Tall Spec. Build., 17, 401-441. https://doi.org/10.1002/tal.360.
  21. Kazaz, I. (2021), "An analytical method to visualize higher mode effects on yielding cantilever walls", Struct. Des. Tall Spec. Build., 30(3), e1827. https://doi.org/10.1002/tal.1827.
  22. Khaloo, A.R. and Khosravi, H. (2013), "Modified fish-bone model: A simplified MDOF model for simulation of seismic responses of moment resisting frames", Soil Dyn. Earthq. Eng., 55, 195-210. https://doi.org/10.1016/j.soildyn.2013.09.013.
  23. Khaloo, A.R. Khosravi, H. and Jamnani, H.H. (2015), "Nonlinear interstory drift contours for idealized forward directivity pulses using 'modified fish-bone' models", Adv. Struct. Eng., 18(5), 603-627. https://doi.org/10.1260/1369-4332.18.5.603.
  24. Kilar, V. and. Fajfar, P. (1997), "Simple push-over analysis of asymmetric buildings", Earthq. Eng. Struct. Dyn., 26, 233-249. https://doi.org/10.1002/(SICI)1096-9845.
  25. Kreslin, M. and Fajfar, P. (2010), "Seismic evaluation of an existing complex RC building", Bull. Earthq. Eng., 8, 363-385. https://doi.org/10.1007/s10518-009-9155-0.
  26. Kreslin, M. and Fajfar, P. (2011), "The extended N2 method taking into account higher mode effects in elevation", Earthq. Eng. Struct. Dyn., 40, 1571-1589. https://doi.org/10.1002/eqe.1104.
  27. Kuang, J.S. and Huang, K. (2011), "Simplified multi-degree-offreedom model for estimation of seismic response of regular wall-frame structures", Struct. Des. Tall Spec. Build., 20(3), 418-432. https://doi.org/10.1002/tal.538.
  28. Lightfoot, E. (1956), "The analysis for wind loading of rigidjointed multi-storey building frames", Civil Eng. Public Works Rev., 51(601), 757-759.
  29. Lightfoot, E. (1958), "Substitute frames in the analysis of rigid jointed structures (Part 2)", Civil Eng. Public Works Rev., 53(619), 70-72.
  30. Liu, Y. and Kuang, J.S. (2017) "Spectrum-based pushover analysis for estimating seismic demand of tall buildings", Bull. Earthq. Eng., 15, 4193-4214. https://doi.org/10.1007/s10518-017-0132-8.
  31. Mechaala, A. and Chikh, B. (2022), "A new non-iterative procedure to estimate seismic demands of structures", Earthq. Struct., 22(6), 585-595. https://doi.org/10.12989/eas.2022.22.6.585.
  32. Merter, O. and Ucar, T. (2021), "An energy-based approach to determine the yield force coefficient of RC frame structures", Earthq. Struct., 21(1), 37-49. https://doi.org/10.12989/eas.2021.21.1.037.
  33. Miranda, E. (1999), "Approximate seismic lateral deformation demands in multistory buildings", J. Struct. Eng., 125(4), 417-425. https://doi.org/10.1061/(ASCE)0733-9445.
  34. Nadjai, A. and Johnson, D. (1998), "Elastic and elasto-plastic analysis of planar coupled shear walls with flexible bases", Comput. Struct., 68(1-3), 213-229. https://doi.org/10.1016/S0045-7949(98)00036-4.
  35. Nakashima, M., Ogawa, K. and Inoue, K. (2002), "Generic frame model for simulation of earthquake responses of steel moment frames", Earthq. Eng. Struct. Dyn., 31(3), 671-692. https://doi.org/10.1002/eqe.14.
  36. Ozturk, D. and Bozdogan, K.B. (2020), "Determination of the dynamic characteristics of frame structures with non-uniform shear stiffness", Iran J. Sci. Technol. Trans. Civil Eng., 44, 37-47. https://doi.org/10.1007/s40996-019-00235-5.
  37. Pejovic, J.R. and Serdar, N.N. (2021), "Estimation of inter-story drifts at onset of damage states for RC high-rise buildings", Earthq. Struct., 21(1), 63-78. https://doi.org/10.12989/eas.2021.21.1.063.
  38. Perdomo, C., Monteiro, R. and Sucuoglu, H. (2017), "Generalized force vectors for multi-mode pushover analysis of bridges", Bull. Earthq. Eng., 15, 5247-5280. https://doi.org/10.1007/s10518-017-0179-6.
  39. Potzta, G. and Kollar, L.P. (2003), "Analysis of building structures by replacement sandwich beams", J. Solid. Struct., 40, 535-553. https://doi.org/10.1016/S0020-7683(02)00622-4.
  40. Poursha, M. and Amini, M.A. (2015), "A single-run multi-mode pushover analysis to account for the effect of higher modes in estimating the seismic demands of tall buildings", Bull. Earthq. Eng., 13, 2347-2365. https://doi.org/10.1007/S10518-014-9721-Y.
  41. Poursha, M., Khoshnoudian, F. and Moghadam, A.S. (2009), "A consecutive modal pushover procedure for estimating the seismic demands of tall buildings", Eng. Struct., 31, 591-599. https://doi.org/10.1016/j.engstruct.2008.10.009.
  42. Rahmani, A.Y., Bourahla, N., Bento, R. and Badaoui, M. (2019), "Adaptive upper-bound pushover analysis for high-rise moment steel frames", Struct., 20, 912-923. https://doi.org/10.1016/j.istruc.2019.07.006.
  43. Soleimani, R. and Hamidi, H. (2021), "Improved substitute-frame (ISF) model for seismic response of steel-MRF with vertical irregularities", J. Constr. Steel. Res., 186, 106918. https://doi.org/10.1016/j.jcsr.2021.106918.
  44. Soleimani, R., Hamidi, H. and Khosravi, H. (2022), "On advantages of the 'Substitute Frame' model for incremental dynamic analysis: Integration of speed and accuracy", Struct., 39, 266-277. https://doi.org/10.1016/j.istruc.2022.03.035.
  45. Soleimani, R., Khosravi, H. and Hamidi, H. (2019), "Substitute frame and adapted fish-bone model: Two simplified frames representative of RC moment resisting frames", Eng. Struct., 185, 68-89. https://doi.org/10.1016/j.engstruct.2019.01.127.
  46. Stafford Smith, B., Kuster, M. and Hoenderkamp, J.C.D. (1981), "A generalized approach to the deflection analysis of braced frame, rigid frame and coupled shear wall structures", Can. J. Civil Eng., 8(2), 230-240. https://doi.org/10.1139/l81-030.
  47. Sullivan, T.J., Romano, D.S., O'Reilly, G.J., Welch, D.P. and Landi, L. (2021), "Simplified pushover analysis of moment resisting frame structures", J. Earthq. Eng., 25(4), 621-648. https://doi.org/10.1080/13632469.2018.1528911.
  48. Sucuoglu, H. and Gunay, M.S. (2011), "Generalized force vectors for multi-mode pushover analysis", Earthq. Eng. Struct. Dyn., 40, 55-74. https://doi.org/10.1002/eqe.1020.
  49. Taranath, B.S. (2010), Reinforced Concrete Design of Tall Buildings, CRC Press, Boca Raton, FL, USA.
  50. Tekeli, H. and Atimtay, E. (2015), "A simplified non-linear procedure for buildings with shear walls", Proc. Inst. Civil Eng. Struct. Build., 168(1), 56-66. https://doi.org/10.1680/stbu.12.00062.
  51. Wong, K.K.F. (2011), "Nonlinear dynamic analysis of structures using modal superposition", Structures Congress, Las Vegas, NV, USA, April.
  52. Xiong, C., Lu, X. and Guan, H. (2016), "A nonlinear computational model for regional sesimic simulation of tall buildings", Bull. Earthq. Eng., 14, 1047-1069. https://doi.org/10.1007/s10518-016-9880-0.
  53. Qu, Z., Gong, T., Li, Q. and Wang, T. (2019), "Evaluation of the fishbone model in simulating the seismic response of multistory reinforced concrete moment-resisting frames", Earthq. Eng. Eng. Vib., 18, 315-330. https://doi.org/10.1007/s11803-019-0506-9.
  54. Zalka, K. (2001), Global Structural Analysis of Buildings, E & FN Spon, London, UK.
  55. Zalka, K. (2021), "A simplified method for calculation of the natural frequencies of wall-frame buildings", Eng. Struct., 23(12), 1544-1555. https://doi.org/10.1016/S0141-0296(01)00053-0.
  56. Zhang, Y. Chen, X, Zhang, X., Ding, M, Wang, Y. and Liu, Z. (2020), "Nonlinear response of the pile group foundation for lateral loads using pushover analysis", Earthq. Struct., 19(4), 273-286. https://doi.org/10.12989/eas.2020.19.4.273.