DOI QR코드

DOI QR Code

Influence of the deteriorated anti-seismic devices on seismic performance and device behavior of continuous girder bridges

  • Shangtao Hu (National Engineering Research Center of High-Speed Railway Construction Technology, Central South University) ;
  • Renkang Hu (National Engineering Research Center of High-Speed Railway Construction Technology, Central South University) ;
  • Menggang Yang (National Engineering Research Center of High-Speed Railway Construction Technology, Central South University) ;
  • Dongliang Meng (National Engineering Research Center of High-Speed Railway Construction Technology, Central South University)
  • Received : 2022.11.01
  • Accepted : 2023.03.27
  • Published : 2023.05.25

Abstract

Various seismic isolation and reduction devices have been applied to suppress the longitudinal vibration of continuous girder bridges. As representative devices, lead rubber bearing (LRB) and fluid viscous damper (FVD) might suffer from deterioration during the long-term service. This study aims to evaluate the impact of device deterioration on the seismic responses of continuous girder bridges and investigate the seismic behavior of deteriorated LRBs and FVDs. Seismic performance of a simplified bridge model was investigated, and the influence of device deterioration was evaluated by the coefficient of variation method. The contribution of LRB and FVD was assessed by the Sobol global sensitivity analysis method. Finally, the seismic behaviors of deteriorated LRBs and FVDs were discussed. The result shows that (i) the girder-pier relative displacement is the most sensitive to the changes in the deterioration level, (ii) the deterioration of FVD has a greater effect on the structural responses than that of LRB, (iii) FVD plays a major role in energy dissipation with a low degradation level while LRB is more essential in dissipating energy when suffering from high degradation level, (iv) the deteriorated devices are more likely to reach the ultimate state and thus be damaged.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (No. 51978667, 52278232), the Science and Technology Research and Development Program Project of China State Railway Group Co., Ltd. (Major Special Project, No. 2021-Special-04-2), and the China Scholarship Council (No. 202206370126).

References

  1. Abe, M., Fujino, Y. and Yoshida, J. (2000), "Dynamic behaviour and seismic performance of base-isolated bridges in observed seismic records", Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, January.
  2. Aghaeidoost, V. and Muntasir Billah, A.M. (2022), "Sensitivity of seismic fragility of base-isolated bridges to lead rubber bearing modeling technique", Struct. Control Health Monit., 29(8), e2971. https://doi.org/10.1002/stc.2971.
  3. Agrawal, A.K., Ghosn, M., Alampalli, S. and Pan, Y. (2012), "Seismic fragility of retrofitted multispan continuous steel bridges in New York", J. Bridge Eng., 17(4), 562-575. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000290.
  4. Ataei, H. and Anaraki, K.K.A. (2018), "Proposed structural design method considering fluid viscous damper degradations", Struct. Des. Tall Spec. Build., 27(15), e1512. https://doi.org/10.1002/tal.1512.
  5. Avci-Karatas, C., Celik, O.C. and Yalcin, C. (2018), "Experimental investigation of aluminum alloy and steel core buckling restrained braces (BRBs)", Int. J. Steel Struct., 18(2), 650-673. https://doi.org/10.1007/s13296-018-0025-y.
  6. Avci-Karatas, C., Celik, O.C. and Eruslu, S.O. (2019), "Modeling of buckling restrained braces (BRBs) using full-scale experimental data", KSCE J. Civil Eng., 23(10), 4431-4444. https://doi.org/10.1007/s12205-019-2430-y.
  7. Buckle, I.G. and Mayes, R.L. (1987), "Seismic isolation of bridge structures in the United States of America", Proceedings of the 3rd US Japan Workshop on Bridge Engineering, Tsukuba, Japan.
  8. Celik, O.C., Yuksel, E., Avci-Karatas, C., Bal, A., Gokce, T., Bago, Z. and Koller, G. (2015), "Component testing of steel-core buckling restrained braces (BRBs) with pinned end connections", The 8th International Conference on Advances in Steel Structures (ICASS-2015), Lisbon, Portugal, July.
  9. Chen, Y.J., Sun, H.L. and Feng, Z.F. (2021), "Study on seismic isolation of long span double deck steel truss continuous girder bridge", Appl. Sci., 12(5), 2567. https://doi.org/10.3390/app12052567.
  10. Dolati, S.S.K., Mehrabi, A. and Dolati, S.S.K. (2021), "Application of viscous damper and laminated rubber bearing pads for bridges in seismic regions", Metals, 11(11), 1666. https://doi.org/10.3390/met11111666.
  11. Esfandiyari, R., Nejad, S.M., Marnani, J.A., Mousavi, S.A. and Zahrai, S.M. (2020), "Seismic behavior of structural and nonstructural elements in RC building with bypass viscous dampers", Steel Compos. Struct., 34(4), 487-497. https://doi.org/10.12989/scs.2020.34.4.487.
  12. Feng, D.M. and Wang, J.Q. (2021), "Seismic control of a self-anchored suspension bridge using fluid viscous dampers", Int. J. Struct. Stab. Dyn., 21(2), 2150025. https://doi.org/10.1142/S0219455421500255.
  13. Fu, J.Y., Tong, L., An, Z.H. and Wang, D.S. (2022), "Seismic responses of sea-crossing isolated continuous beam bridges considering seabed-pile-seawater-bridge interaction", Eng. Fail. Anal., 137, 106254. https://doi.org/10.1016/j.engfailanal.2022.106254.
  14. Gao, Q.F., Wu, B., Li, J., Cui, K.M. and Xu, C. (2020), "Investigation of traffic loading effects for different codes on medium- and small-span girder bridges in China", Adv. Civil Eng., 2020, 8851981. https://doi.org/10.1155/2020/8851981.
  15. Gu, H. and Itoh, Y. (2010), "Ageing behaviour of natural rubber and high damping rubber materials used in bridge rubber bearings", Adv. Struct. Eng., 13(6), 1105-1113. https://doi.org/10.1260/1369-4332.13.6.1105.
  16. Hassana, A.L. and Muntasir Billah, A.M. (2020), "Influence of ground motion duration and isolation bearings on the seismic response of base-isolated bridges", Eng. Struct., 222, 111129. https://doi.org/10.1016/j.engstruct.2020.111129.
  17. Hayashi, K., Adachi, Y., Igarashi, A. and Dang, J. (2014), "Experimental evaluation of aging deterioration of rubber bearings in highway bridges", Proceedings of the 2nd European Conference on Earthquake Engineering and Seismology, Istanbul, Turkey, August.
  18. He, Z.Y., Yang, H., Zhu, J.Y. and Pang, Y.T. (2021), "A new energy balance-based method for evaluating seismic performance of isolated bridges under near-fault ground motions", Struct., 34, 3724-3737. https://doi.org/10.1016/j.istruc.2021.09.091.
  19. Hu, R.K., Hu, S.T. and Yang, M.G. (2022a), "Metallic yielding dampers and fluid viscous dampers for vibration control in civil engineering: A review", Int. J. Struct. Stab. Dyn., 22(16), 2230006. https://doi.org/10.1142/S0219455422300063.
  20. Hu, S.T., Hu, R.K., Yang, M.G. and Wang, T. (2022b), "Research on the seismic performance of the combined viscous-steel damping system (CVSDS) suffering from oil leakage", J. Vib. Control, 2022, 10775463221126028. https://doi.org/10.1177/10775463221126028.
  21. Hu, S.T., Meng, D.L., Hu, R.K. and Yang, M.G. (2022c), "A combined viscous-steel damping system (CVSDS) for longitudinal vibration mitigation of a long-span railway suspension bridge", J. Earthq. Eng., 27(5), 1261-1280. https://doi.org/10.1080/13632469.2022.2074915.
  22. Hu, S.T., Yang, M.G., Meng, D.L. and Hu, R.K. (2023), "Damping performance of the degraded fluid viscous damper due to oil leakage", Struct., 48, 1609-1619. https://doi.org/10.1016/j.istruc.2023.01.070.
  23. Hwang, J.S., Hung, C.F., Huang, Y.N. and Wang, S.J. (2010), "Design force transmitted by isolation system composed of lead-rubber bearings and viscous dampers", Int. J. Struct. Stab. Dyn., 10(2), 287-298. https://doi.org/10.1142/S0219455410003440.
  24. Itoh, Y., and Gu, H. (2009), "Prediction of aging characteristics in natural rubber bearings used in bridges", J. Bridge Eng., 14(2), 122-128. https://doi.org/10.1061/(ASCE)1084-0702(2009)14:2(122).
  25. Joe, S. and Kuo, F.Y. (2003), "Remark on algorithm 659: Implementing Sobol's quasirandom sequence generator", ACM Trans. Math. Softw., 29(1), 49-57. https://doi.org/10.1145/641876.641879.
  26. Joe, S. and Kuo, F.Y. (2008), "Constructing Sobol sequences with better two-dimensional projections", SIAM J. Sci. Comput., 30(5), 2635-2654. https://doi.org/10.1137/070709359.
  27. Ju, S.H. (2020), "Derailment of trains moving on lead rubber bearing bridges under seismic loads", J. Vib. Control, 26(19-20), 1646-1655. https://doi.org/10.1177/1077546320902354.
  28. Konstantinidis, D., Makris, N. and Kelly, J.M. (2015), "In-situ condition assessment of seismic fluid dampers: Experimental studies and challenges", Meccanica, 50(2), 323-340. https://doi.org/10.1007/s11012-014-9882-4.
  29. Kurino, S., Wei, W. and Igarashi, A. (2021), "Seismic fragility and uncertainty mitigation of cable restrainer retrofit for isolated highway bridges incorporated with deteriorated elastomeric bearings", Eng. Struct., 237, 112190. https://doi.org/10.1016/j.engstruct.2021.112190.
  30. Li, Y.L., Zong, Z.H., Yang, B.W., Lin, Y.Z. and Lin, J. (2020), "Research on longitudinal collapse mode and control of the continuous bridge under strong seismic excitations", Appl. Sci., 10(17), 6049. https://doi.org/10.3390/app10176049.
  31. Li, Z.X., Chen, Y. and Shi, Y.D. (2017), "Numerical failure analysis of a continuous reinforced concrete bridge under strong earthquakes using multi-scale models", Earthq. Eng. Eng. Vib., 16(2), 397-413. https://doi.org/10.1007/s11803-017-0389-6.
  32. Li, Z.Y., Kang, S.B. and You, C. (2022), "Seismic mitigation of curved continuous girder bridge considering collision effect", Symmetry, 14(1), 129. https://doi.org/10.3390/sym14010129.
  33. Liang, R.J., Wang, H., Li, J., Gao, H., Zheng, W.Z. and Xu, Z.D. (2021), "Multiple tuned inerter-based dampers for seismic response mitigation of continuous girder bridges", Soil Dyn. Earthq. Eng., 151, 106954. https://doi.org/10.1016/j.soildyn.2021.106954.
  34. Lin, W.C., Wang, S.J. and Hwang, J.S. (2022), "Seismic retrofit of existing critical structures using externally connected viscous dampers", Int. J. Struct. Stab. Dyn., 22(13), 2250144. https://doi.org/10.1142/S0219455422501449.
  35. Liu, Q.F., Zhu, S.M., Yu, W.S., Wu, X., Song, F. and Ren, X. (2021), "Ground motion frequency insensitivity of bearing-supported pedestrian bridge with viscous dampers", KSCE J. Civil Eng., 25(7), 2662-2673. https://doi.org/10.1007/s12205-021-2233-9.
  36. Liu, Y.H., Wu, J.B. and Dona, M. (2018), "Effectiveness of fluid-viscous dampers for improved seismic performance of inter-storey isolated buildings", Eng. Struct., 169, 276-292. https://doi.org/10.1016/j.engstruct.2018.05.031.
  37. Ma, A.C., Tan, P., Wang, S.L. and Zhou, F.L. (2020), "Stochastic optimization of continuous beam bridge viscous damper considering the fluid-solid coupling effect and its damping performance", Int. J. Heat Technol., 38(1), 37-44. https://doi.org/10.18280/ijht.380105.
  38. Matsuzaki, H. (2022), "Time-dependent seismic reliability of isolated bridges considering ageing deterioration of lead rubber bearings", Struct. Infrastruct. Eng., 18(10-11), 1526-1541. https://doi.org/10.1080/15732479.2022.2063907.
  39. Mazza, F. (2019), "Effects of the long-term behaviour of isolation devices on the seismic response of base-isolated buildings", Struct. Control Health Monit., 26(4), e2331. https://doi.org/10.1002/stc.2331.
  40. Montazeri, M., Amiri, G.G. and Namiranian, P. (2021), "Seismic fragility and cost-benefit analysis of a conventional bridge with retrofit implements", Soil Dyn. Earthq. Eng., 141, 106456. https://doi.org/10.1016/j.soildyn.2020.106456.
  41. Novak, L. and Novak, D. (2021), "Estimation of coefficient of variation for structural analysis: The correlation interval approach", Struct. Saf., 92, 102101. https://doi.org/10.1016/j.strusafe.2021.102101.
  42. Palermo, M. and Silvestri, S. (2020), "Damping reduction factors for adjacent buildings connected by fluid-viscous dampers", Soil Dyn. Earthq. Eng., 138, 106323. https://doi.org/10.1016/j.soildyn.2020.106323.
  43. Peng, T.B., Yu, X.T., Wang, Z.N. and Han, L. (2012), "Study of the seismic performance of expansion double spherical seismic isolation bearings for continuous girder bridges", Earthq. Eng. Eng. Vib., 11(2), 163-172. https://doi.org/10.1007/s11803-012-0107-3.
  44. Sobol, I.M. (2001), "Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates", Math. Comput. Simul., 55(1-3), 271-280. https://doi.org/10.1016/S0378-4754(00)00270-6.
  45. Tan, P., Huang, J.D., Chang, C.M. and Zhang, Y. (2017), "Failure modes of a seismically isolated continuous girder bridge", Eng. Fail. Anal., 80, 57-78. https://doi.org/10.1016/j.engfailanal.2017.05.030.
  46. Toopchi-Nezhada, H., Ghotba, M.R., Al-Anany, Y.M. and Tait, M.J. (2019), "Partially bonded fiber reinforced elastomeric bearings: Feasibility, effectiveness, aging effects, and low temperature response", Eng. Struct., 179, 120-128. https://doi.org/10.1016/j.engstruct.2018.10.043.
  47. Tsipianitis, A. and Tsompanakis, Y. (2022), "Improving the seismic performance of base-isolated liquid storage tanks with supplemental linear viscous dampers", Earthq. Eng. Eng. Vib., 21(1), 269-282. https://doi.org/10.1007/s11803-022-2083-6.
  48. Vu, T.D., Kim, D. and Cho, S.G. (2013), "Updating of analytical model to consider aging effects of lead-rubber bearings for the seismic design of base-isolated nuclear power plants", Nucl. Technol., 182(1), 75-83. https://doi.org/10.13182/NT13-A15828.
  49. Wei, W., Yuan, Y., Igarashi, A., Zhu, H.P. and Tan, P. (2021), "Experimental investigation and seismic fragility analysis of isolated highway bridges considering the coupled effects of pier height and elastomeric bearings", Eng. Struct., 233, 111926. https://doi.org/10.1016/j.engstruct.2021.111926.
  50. Zhang, H., Zhang, X.D. and Wang, J.T. (2013), "Analysis of viscous dampers for continuous bridge in meizoseismal area", Appl. Mech. Mater., 353-356, 2149-2152. https://doi.org/10.4028/www.scientific.net/AMM.353-356.2149.
  51. Zhang, W.X., Su, L.J., Zhang, C., Zheng, Y.R. and Yang, W.F. (2022), "Seismic performance of a continuous bridge with winding rope device activated by a fluid viscous damper", Adv. Struct. Eng., 25(6), 1222-1239. https://doi.org/10.1177/13694332211070068.
  52. Zhang, W.Z., Wang, H., Hao, H., Bi, K.M. and Shen, H.J. (2020), "Performance of bridges isolated with sliding-lead rubber bearings subjected to near-fault earthquakes", Int. J. Struct. Stab. Dyn., 20(2), 2050023. https://doi.org/10.1142/S0219455420500236.
  53. Zhou, P., Liu, M., Li, S.C., Li, H. and Song, G.B. (2020), "Experimental study on seismic control of towers in cable-supported bridges by incorporating fluid viscous dampers between sub-towers", Adv. Struct. Eng., 23(10), 2086-2096. https://doi.org/10.1177/1369433220908031.