DOI QR코드

DOI QR Code

Performance-based plastic design of buckling-restrained braced frames with eccentric configurations

  • Received : 2022.11.02
  • Accepted : 2023.03.23
  • Published : 2023.05.25

Abstract

The buckling-restrained braced frames with eccentric configurations (BRBFECs) are stable cyclic behavior and high energy absorption capacity. Furthermore, they have an architectural advantage for creating openings like eccentrically braced frames (EBFs). In the present study, it has been suggested to use the performance-based plastic design (PBPD) method to calculate the design base shear of the BRBFEC systems. Moreover, in this study, to reduce the required steel material, it has been suggested to use the performance-based practical design (PBPD) method instead of the force-based design (FBD) method for the design of this system. The 3-, 6-, and 9-story buildings with the BRBFEC system were designed, and the finite element models were modeled. The seismic performance of the models was investigated using two suits of ground motions representing the maximum considered earthquake (MCE) and design basis earthquake (DBE) seismic hazard levels. The results showed that the models designed with the suggested method, which had lower weights compared to those designed with the FBD method, had a desirable seismic performance in terms of maximum story drift and ductility demand under earthquakes at both MCE and DBE seismic hazard levels. This suggests that the steel weights of the structures designed with the PBPD method are about 13% to 18% lesser than the FBD method. However, the residual drifts in these models were higher than those in the models designed with the FBD method. Also, in earthquakes at the DBE hazard level, the residual drifts in all models except the PBPD-6s and PBPD-9s models were less than the allowable reparability limit.

Keywords

References

  1. ATC (Applied Technology Council) (2006), Next-generation Performance-Based Seismic Design Guidelines: Program Plan for New and Existing Buildings (FEMA-445), Applied Technology Council, Redwood City, CA, USA.
  2. ABAQUS-6.14 (2014), Standard User's Manual, Hibbitt, Karlsson and Sorensen, Inc., Providence, RI, USA.
  3. Abdollahzadeh, G. and Banihashemia, M. (2013), "Response modification factor of dual moment-resistant frame with buckling restrained brace (BRB)", Steel Compos. Struct., 14(6), 621-636. https://doi.org/10.12989/scs.2013.14.6.621.
  4. Ahmadi, O., Ricles, J.M., and Sause, R. (2018), "Modeling and seismic collapse resistance study of a steel SC-MRF", Soil Dyn. Earthq. Eng., 113, 324-338. https://doi.org/10.1016/j.soildyn.2018.05.026.
  5. Alinaghi, A. and Beiraghi, H. (2021), "Performance based assessment for tall core structures consisting of buckling restrained braced frames and RC walls", Earthq. Struct., 21(5), 515-530. https://doi.org/10.12989/eas.2021.21.5.515.
  6. Almeida, A., Ferreira, R., Proenca, J.M. and Gago, A.S. (2017), "Seismic retrofit of RC building structures with buckling restrained braces", Eng. Struct., 130, 14-22. https://doi.org/10.1016/j.engstruct.2016.09.036.
  7. ASCE (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, (ASCE/SEI7-16), American Society of Civil Engineers, Reston, VA, USA.
  8. ASCE 7-10. (2010), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA, USA.
  9. Beiraghi, H. (2019), "Seismic response of dual structures comprised by buckling-restrained braces (BRB) and RC walls", Struct. Eng. Mech., 72(4), 443-454. https://doi.org/10.12989/sem.2019.72.4.443.
  10. Cao, L. and Li, C. (2022), "A high performance hybrid passive base-isolated system", Struct. Control Health Monit., 29(3), e2887. https://doi.org/10.1002/STC.2887.
  11. Chao, S.H. and Goel, S.C. (2006), "Performance-based seismic design of eccentrically braced frames using target drift and yield mechanism as performance criteria", Eng. J. - Am. Inst. Steel Constr. Inc, 43(3), 173-200.
  12. Chao, S.H. and Goel, S.C. (2008), "Performance-based plastic design of special truss moment frames", Eng. J., 45(2), 127.
  13. Chao, S.H., Goel, S.C. and Lee, S.S. (2007), "A seismic design lateral force distribution based on inelastic state of structures", Earthq. Spectra, 23(3), 547-569. https://doi.org/10.1193/1.2753549.
  14. Choi, H. and Kim, J. (2009), "Evaluation of seismic energy demand and its application on design of buckling-restrained braced frames", Struct. Eng. Mech., 31(1), 93-112. https://doi.org/10.12989/sem.2009.31.1.093.
  15. Dasgupta, P., Goel, S.C., Parra-montesinos, G. and Tsai, K.C. (2004), "Performance-based seismic design and behavior of a composite buckling restrained braced frame", Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, August.
  16. Erdem Cercevik, A., Avsar, O. and Dilsiz, A. (2021), "Optimal placement of viscous wall dampers in RC moment resisting frames using metaheuristic search methods", Eng. Struct., 249, 113108. https://doi.org/10.1016/J.ENGSTRUCT.2021.113108.
  17. Erochko, J., Christopoulos, C., Tremblay, R. and Choi, H. (2011), "Residual drift response of SMRFs and BRB frames in steel buildings designed according to ASCE 7-05", J. Struct. Eng., 137(5), 589-599. https://doi.org/10.1061/(asce)st.1943-541x.0000296.
  18. Fahnestock, L.A., Ricles, J.M. and Sause, R. (2007a), "Experimental evaluation of a large-scale buckling-restrained braced frame", J. Struct. Eng., 133(9), 1205-1214. https://doi.org/10.1061/(asce)0733-9445(2007)133:9(1205).
  19. Fahnestock, L.A., Sause, R. and Ricles, J.M. (2007b), "Seismic response and performance of buckling-restrained braced frames", J. Struct. Eng., 133(9), 1195-1204. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:9(1195).
  20. FEMA P695 (2009), Quantification of Building Seismic Performance Factors, Applied Technology Council for the Federal Emergency Management Agency, Washington, D.C., USA.
  21. Ghamari, A. and Haeri, H. (2021), "Improving the behavior of high performance steel plate shear walls using low yield point steel", Case Stud. Constr. Mater., 14, e00511. https://doi.org/10.1016/j.cscm.2021.e00511.
  22. Gholami, M., Zare, E., Gorji Azandariani, M. and Moradifard, R. (2021), "Seismic behavior of dual buckling-restrained steel braced frame with eccentric configuration and post-tensioned frame system", Soil Dyn. Earthq. Eng., 151, 106977. https://doi.org/10.1016/j.soildyn.2021.106977.
  23. Gholhaki, M., Eshrafi, B., Gorji Azandariani, M. and Rezaeifar, O. (2021), "Seismic assessment of linked-column frame structural system considering soil-structure effects", Struct., 33, 2264-2272. https://doi.org/10.1016/j.istruc.2021.06.005.
  24. Goel, S.C. and Chao, S.H. (2008), Performance-Based Plastic Design: Earthquake-Resistant Steel Structures, Country Club Hills, IL, USA.
  25. Goel, S.C., Chao, S., Leelataviwat, S. and Lee, S. (2008), "Performance-based plastic design (PBPD) method for earthquake-resistant Structures", 14th World Conferemce Earthquake Engineering, Beijing, China, October.
  26. Gorji Azandariani, A., Gholhaki, M. and Gorji Azandariani, M. (2022a), "Assessment of damage index and seismic performance of steel plate shear wall (SPSW) system", J. Constr. Steel Res., 191, 107157. https://doi.org/10.1016/j.jcsr.2022.107157.
  27. Gorji Azandariani, M., Abdolmaleki, H. and Gorji Azandariani, A. (2020a), "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs)", Thin Wall. Struct., 151, 106751. https://doi.org/10.1016/j.tws.2020.106751.
  28. Gorji Azandariani, M., Ghanbari-Ghazijahani, T., Mohebkhah, A. and Classen, M. (2021a), "Concrete- and timber-filled tubes under axial compression - Numerical and theoretical study", J. Build. Eng., 44, 103231. https://doi.org/10.1016/j.jobe.2021.103231.
  29. Gorji Azandariani, M. and Gholami, M. (2022), "Seismic fragility investigation of hybrid structures BRBF with eccentric-configuration and self-centering frame", J. Constr. Steel Res., 196, 107300. https://doi.org/https://doi.org/10.1016/j.jcsr.2022.107300.
  30. Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2020b), "Experimental and numerical investigation of low-yield-strength (LYS) steel plate shear walls under cyclic loading", Eng. Struct., 203, 109866. https://doi.org/10.1016/j.engstruct.2019.109866.
  31. Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2021b), "Hysteresis finite element model for evaluation of cyclic behavior and performance of steel plate shear walls (SPSWs)", Struct., 29, 30-47. https://doi.org/https://doi.org/10.1016/j.istruc.2020.11.009.
  32. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A. and Gorji Azandariani, A. (2022b), "Assessment of cyclic behavior and performance of hybrid linked-column steel plate shear wall system", J. Build. Eng., 58, 104963. https://doi.org/10.1016/j.jobe.2022.104963.
  33. Gorji Azandariani, M., Gholhaki, M., Kafi, M.A. and Zirakian, T. (2021c), "Study of effects of beam-column connection and column rigidity on the performance of SPSW system", J. Build. Eng., 33, 101821. https://doi.org/10.1016/j.jobe.2020.101821.
  34. Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020c), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145.
  35. Gorji Azandariani, M., Kafi, M.A. and Gholhaki, M. (2021d), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844.
  36. Gorji Azandariani, M., Rousta, A.M., Mohammadi, M., Rashidi, M. and Abdolmaleki, H. (2021e), "Numerical and analytical study of ultimate capacity of steel plate shear walls with partial plate-column connection (SPSW-PC)", Struct., 33, 3066-3080. https://doi.org/10.1016/j.istruc.2021.06.046.
  37. Haider, S.M.B. and Lee, D. (2021), "A review on BRB and SC-BRB members in building structures", Struct. Eng. Mech., 80(5), 609-623. https://doi.org/10.12989/sem.2021.80.5.609.
  38. Hejazi, F., Shoaei, M.D., Tousi, A. and Jaafar, M.S. (2016), "Analytical model for viscous wall dampers", Comput. Civil Infrastruct. Eng., 31(5), 381-399. https://doi.org/10.1111/MICE.12161.
  39. Housner, G.W. (1956), "Limit design of structures to resist earthquakes", Proceedings of the First World Conference on Earthquake Engineering, Berkeley, CA, USA, June.
  40. Izzuddin, B.A. (1990), "Nonlinear dynamic analysis of framed structures", Ph.D Thesis, Imperial College London (University of London), London, UK.
  41. Izzuddin, B.A. (2001), "Conceptual issues in geometrically nonlinear analysis of 3D framed structures", Comput. Method. Appl. Mech. Eng., 191(8-10), 1029-1053. https://doi.org/10.1016/S0045-7825(01)00317-6.
  42. Izzuddin, B.A., Karayannis, C.G. and Elnashai, A.S. (1994), "Advanced nonlinear formulation for reinforced concrete beam-columns", J. Struct. Eng., 120(10), 2913-2934. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:10(2913).
  43. Jalali, A., Daie, M., Nazhadan, S.V.M., Kazemi-Arbat, P. and Shariati, M. (2012), "Seismic performance of structures with pre-bent strips as a damper", Int. J. Phys. Sci., 7(26), 4061-4072. https://doi.org/10.5897/IJPS11.1324.
  44. Jia, M., Lu, D., Guo, L. and Sun, L. (2014), "Experimental research and cyclic behavior of buckling-restrained braced composite frame", J. Constr. Steel Res., 95, 90-105. https://doi.org/10.1016/j.jcsr.2013.11.021.
  45. Kersting, R.A., Fahnestock, L.A. and Lopez, W.A. (2015), "Seismic design of steel buckling-restrained braced frames", NIST GCR 15-917; National Institute of Standards and Technology, Gaithersburg, MD, USA.
  46. Khorami, M., Khorami, M., Alvansazyazdi, M., Shariati, M., Zandi, Y., Jalali, A. and Tahir, M.M. (2017a), "Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)", Earthq. Struct., 13(6), 531-538. https://doi.org/10.12989/eas.2017.13.6.531.
  47. Khorami, M., Khorami, M., Alvansazyazdi, M., Shariati, M., Zandi, Y., Jalali, A. and Tahir, M.M. (2017b), "Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)", Earthq. Struct., 13(6), 531-538. https://doi.org/10.12989/eas.2017.13.6.531.
  48. Khorami, M., Khorami, M., Motahar, H., Alvansazyazdi, M., Shariati, M., Jalali, A. and Tahir, M.M. (2017c), "Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis", Struct. Eng. Mech., 63(2), 259-268. https://doi.org/10.12989/sem.2017.63.2.259.
  49. Kim, J., Park, J. and Kim, S. D. (2009), "Seismic behavior factors of buckling-restrained braced frames", Struct. Eng. Mech., 33(3), 261-284. https://doi.org/10.12989/sem.2009.33.3.261.
  50. Kim, S.H. and Choi, S.M. (2015), "Structural behavior of inverted V-braced frames reinforced with non-welded buckling restrained braces", Steel Compos. Struct., 19(6), 1581-1598. https://doi.org/10.12989/scs.2015.19.6.1581.
  51. Lemaitre, J. and Chaboche, J.L. (1994), Mechanics of Solid Materials, Cambridge University Press, Cambridge, UK.
  52. Li, C., Chang, K., Cao, L. and Huang, Y. (2021), "Performance of a nonlinear hybrid base isolation system under the ground motions", Soil Dyn. Earthq. Eng., 143, 106589. https://doi.org/10.1016/J.SOILDYN.2021.106589.
  53. Lopez, W.A. and Sabelli, R. (2004), "Seismic design of buckling-restrained braced frames", Steel TIPS, 2004, 78.
  54. McCormick, J., Aburano, H., Ikenaga, M. and Nakashima, M. (2008), "Permissible residual deformation levels for building structures considering both safety and human elements", Proceedings of the 14th World Conference on Earthquake Engineering, Bejing, China, October.
  55. Newmark, N.M. and Hall, W.J. (1982), "Earthquake spectra and design", Engineering Monographs on Earthquake Criteria, Earthquake Engineering Research Institute, Oakland, CA, USA.
  56. Pettinga, D., Christopoulos, C., Pampanin, S. and Priestley, N. (2007), "Effectiveness of simple approaches in mitigating residual deformations in buildings", Earthq. Eng. Struct. Dyn., 36(12), 1763-1783. https://doi.org/10.1002/eqe.717.
  57. Prinz, G.S. (2010), "Using buckling-restrained braces in eccentric configurations", Ph.D. Thesis, Brigham Young University, Provo, UT, USA.
  58. Prinz, G.S. and Richards, P.W. (2012), "Seismic performance of buckling-restrained braced frames with eccentric configurations", J. Struct. Eng., 138(3), 345-353. https://doi.org/10.1061/(asce)st.1943-541x.0000471.
  59. Qiu, C.X. and Zhu, S. (2017), "Performance-based seismic design of self-centering steel frames with SMA-based braces", Eng. Struct., 130, 67-82. https://doi.org/10.1016/j.engstruct.2016.09.051.
  60. Rousta, A.M. and Azandariani, M.G. (2022), "Micro-finite element and analytical investigations of seismic dampers with steel ring plates", Steel Compos. Struct., 43(5), 565. https://doi.org/10.12989/scs.2022.43.5.565.
  61. Rousta, A.M., Gorji Azandariani, M., Safaei Ardakani, M.A. and Shoja, S. (2022), "Cyclic behavior of an energy dissipation system with the vertical steel panel flexural-yielding dampers", Struct., 45, 629-644. https://doi.org/10.1016/j.istruc.2022.09.047.
  62. Sahoo, D.R. and Chao, S.H. (2010), "Performance-based plastic design method for buckling-restrained braced frames", Eng. Struct., 32(9), 2950-2958. https://doi.org/10.1016/j.engstruct.2010.05.014.
  63. Shariati, M., Lagzian, M., Maleki, S., Shariati, A. and Trung, N.T. (2020), "Evaluation of seismic performance factors for tension-only braced frames", Steel Compos. Struct., 35(4), 599-609. https://doi.org/10.12989/scs.2020.35.4.599.
  64. Somerville, P., Smith, N., Punyamurthula, S. and Sun, J. (1997), "Development of ground motion time histories for Phase 2 of the FEMA/SAC steel project", SAC/BD-97-04, SAC Joint Venture.
  65. Tremblay, R., Dehghani, M., Fahnestock, L., Herrera, R., Canales, M., Clifton, C. and Hamid, Z. (2016), "Comparison of seismic design provisions for buckling restrained braced frames in Canada, United States, Chile, and New Zealand", Struct., 8, 183-196. https://doi.org/10.1016/j.istruc.2016.06.004.
  66. Usefvand, M., Rousta, A.M., Azandariani, M.G. and Abdolmaleki, H. (2021), "Steel dual-ring dampers: Micro-finite element modelling and validation of cyclic behavior", Smart Struct. Syst., 28(4), 579. https://doi.org/10.12989/SSS.2021.28.4.579.
  67. Vaziri, E., Gholami, M. and Gorji Azandariani, M. (2021), "The wall-frame interaction effect in corrugated steel plate shear walls systems", Int. J. Steel Struct., 21(5), 1680-1697. https://doi.org/10.1007/s13296-021-00529-3.
  68. Veismoradi, S. and Darvishan, E. (2018), "Probabilistic seismic assessment of mega buckling-restrained braced frames under near-fault ground motions", Earthq. Struct., 15(5), 487-498. https://doi.org/10.12989/eas.2018.15.5.487.
  69. Wigle, V.R. and Fahnestock, L.A. (2010), "Buckling-restrained braced frame connection performance", J. Constr. Steel Res., 66(1), 65-74. https://doi.org/10.1016/j.jcsr.2009.07.014.
  70. Xie, Q. (2005), "State of the art of buckling-restrained braces in Asia", J. Constr. Steel Res., 61(6), 727-748. https://doi.org/10.1016/j.jcsr.2004.11.005.
  71. Xie, Q., Zhou, Z. and Zhang, L. (2021), "Self-centering BRBs with composite tendons in series: Tests and structural analyses", Steel Compos. Struct., 40(3), 435-450. https://doi.org/10.12989/scs.2021.40.3.435.
  72. Yang, Y., Liu, R., Xue, Y. and Li, H. (2017), "Experimental study on seismic performance of reinforced concrete frames retrofitted with eccentric buckling-restrained braces (BRBs)", Earthq. Struct., 12(1), 79-89. https://doi.org/10.12989/eas.2017.12.1.079.
  73. Zaruma Ochoa, S.R. (2017), "Seismic stability of buckling-restrained braced frames", Master's degree Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
  74. Zaruma, S.R. and Fahnestock, L.A. (2018), "Seismic stability of buckling-restrained braced frames", Key Eng. Mater., 763, 924-931. https://doi.org/10.4028/www.scientific.net/kem.763.924.