DOI QR코드

DOI QR Code

Effect of post-treatment routes on the performance of PVDF-TEOS hollow fiber membranes

  • Shadia R. Tewfik (Chemical Engineering and Pilot Plant Department, Engineering and Renewable Energy Research Institute, National Research Centre) ;
  • Mohamed H. Sorour (Chemical Engineering and Pilot Plant Department, Engineering and Renewable Energy Research Institute, National Research Centre) ;
  • Hayam F. Shaalan (Chemical Engineering and Pilot Plant Department, Engineering and Renewable Energy Research Institute, National Research Centre) ;
  • Heba A. Hani (Chemical Engineering and Pilot Plant Department, Engineering and Renewable Energy Research Institute, National Research Centre) ;
  • Abdelghani G. Abulnour (Chemical Engineering and Pilot Plant Department, Engineering and Renewable Energy Research Institute, National Research Centre) ;
  • Marwa M. El Sayed (Chemical Engineering and Pilot Plant Department, Engineering and Renewable Energy Research Institute, National Research Centre) ;
  • Yomna O. Mostafa (Mechanical Engineering Department, Engineering and Renewable Energy Research Institute, National Research Centre) ;
  • Mahmoud A. Eltoukhy (Chemical Engineering and Pilot Plant Department, Engineering and Renewable Energy Research Institute, National Research Centre)
  • Received : 2022.09.15
  • Accepted : 2023.04.24
  • Published : 2023.03.25

Abstract

Membrane separation is widely used for several applications such as water treatment, membrane reactors and climate change. Cross-linked organic-inorganic hybrid polyvinylidene fluoride (PVDF) / Tetraethyl orthosilicate (TEOS) was adopted for the preparation of optimized hollow membrane (HFM) for membrane distillation or other low pressure separators for mechanical properties and permeability under varying pretreatment schemes. HFMs were prepared on semi-pilot membrane fabrication system. Novel adopted post-treatment schemes involved soaking in glycerol, magnesium sulphate (MgSO4), sodium hypochlorite (NaOCl), and isopropanol for different durations. All fibers were characterized for morphology using a scanning electron microscope (SEM), surface roughness using atomic force microscope (AFM), elemental composition by examining Energy Dispersive Spectroscopy (EDS), water contact angle (CA°) and porosity. The performance of the fibers was evaluated for pure water permeation flux (PWF). Post-treatment with MgSO4 gave the highest both tensile modulus and flux. Assessment of properties and performance revealed comparable results with other organic-inorganic separators, HF or flat. In spite of few reported data on post treatment using MgSO4 in presence of TEOS, this proves the potential of low cost treatment without negative impact on other membrane properties. The flux is also comparable with hypochlorite which manifests substantial precaution requirements in actual industrial use.The relatively high values of flux/bar for sample treated with TEOS, post treated with MgSO4 and hypochlorite are 88 and 82 LMH/bar respectively.

Keywords

Acknowledgement

The authors are grateful to the Ministry of International Cooperation for securing the funds to initiate the National Research Centre's Hollow Fiber Membranes Program from the Islamic Development Bank and Kuwait Fund for Arab Economic Development. This work is funded by Science and Technology Development Fund, STDF, Ministry of Scientific Research, Egypt, Project No. 30280 entitled "Development of a Solar Powered, Zero Liquid Discharge Integrated Desalination Membrane System to Address the Needs for Water of the Mediterranean Region", within the scope of ERANETMED program ID 2-72-357

References

  1. Bildyukevich, A.V. and Usosky, V.V. (2014), "Prevention of the capillary contraction of polysulfone based hollow fiber membranes", Pet. Chem. 54, 652-658. https://doi.org/10.1134/S0965544114080027
  2. Bottino, A., Capannelli, G. and Comite, A. (2022), "Preparation and characterization of novel porous PVDF-ZrO2 composite membranes", Desalination, 146(1-3), 35-40. https://doi.org/10.1016/S0011-9164(02)00469-1.
  3. Bottino, A., Capannelli, G., D'Asti, V. and Piaggio, P. (2001), "Preparation and properties of novel organic-inorganic porous membranes", Sep. Purif. Technol., 22-23(1-3), 269-275. https://doi.org/10.1016/S1383-5866(00)00127-1.
  4. Gholami, M., Nasseri, S., Feng, C.Y., Matsuura T. and Khulbe, K.C. (2003), "The effect of heat-treatment on the ultrafiltration performance of polyethersulfone (PES) hollow-fiber membranes", Desalination, 155(3) 293-301. https://doi.org/10.1016/S0011-9164(03)00307-2.
  5. Hashim, N.A., Liu, Y. and Li, K. (2011), "Preparation of PVDF hollow fiber membranes using SiO2 particles: the effect of acid and alkali treatment on the membrane performances", Ind. Eng. Chem. Res., 50(5), 3035-3040. https://doi.org/10.1021/ie102012v.
  6. Hong, J. and He, Y. (2012), "Effects of nano sized zinc oxide on the performance of PVDF microfiltration membranes", Desalination, 302, 71-79. https://doi.org/10.1016/j.desal.2012.07.001.
  7. Huang, Q.L., Wu, YJ., Xiao, CF., Chen, KK., Songa, L. and Liu, Z. (2015), "Effects of post-treatment on the structure and properties of PVDF/FEP blend hollow fiber membranes", RSC Adv., 5(94), 77407-77416. https://doi.org/10.1039/C5RA13565F.
  8. Huang, X., Zhang, J. Wang, W., Liu, Y., Zhang, L., Li, L. and Fan, W. (2015), "Effects of PVDF/SiO2 hybrid ultrafiltration membranes by sol-gel method for the concentration of fennel oil in herbal water extract", RSC Adv., 5(24), 18258-18266. https://doi.org/10.1039/c4ra15448g.
  9. Kamaludin, R., Majid, L.A., Othman, M.H.D., Mansur, S., Abdul Kadir, S.H.S., Wong, K.Y., Khongnakorn, W. and Puteh, M.H. (2022), "Polyvinylidene difluoride (PVDF) hollow fiber membrane incorporated with antibacterial and anti-fouling by zinc oxide for water and wastewater treatment", Membranes, 12(2), 110-124. https://doi.org/10.3390/membranes12020110.
  10. Khulbe, K.C. and Matsuura, T. (2018), "Thin film composite and/or thin film nanocomposite hollow fiber membrane for water treatment, pervaporation, and gas/vapor separation", Polymers, 10(10), 1051. https://doi.org/10.3390/polym10101051.
  11. Kim, I.C., Yun, H.G. and Lee, K.H. (2002), "Preparation of asymmetric polyacrylonitrile membrane with small pore size by phase inversion and post-treatment process", J. Membr. Sci., 199(1-2), 75-84. https://doi.org/10.1016/S0376-7388(01)00680-9.
  12. Loh, C.H. and Wang, R. (2012), "Effects of additives and coagulant temperature on fabrication of high performance PVDF/Pluronic F127 blend hollow fiber membranes via nonsolvent induced phase separation", Chinese J. Chem. Eng., 20(1) 71-79. https://doi.org/10.1016/S1004-9541(12)60365-6.
  13. Matsuyama, H., Rajabzadeh, S., Karkhanechi, H. and Jeon, S. (2017), "PVDF hollow fibers membranes", Comprehens. Membr. Sci. Eng., 1, 137-189. https://doi.org/10.1016/B978-0-12-409547-2.12244-9.
  14. Oh, S.J., Kim, N. and Lee, Y.T. (2009), "Preparation and characterization of PVDF/TiO2 organic-inorganic composite membranes for fouling resistance improvement", J. Membr. Sci., 345(1-2), 13-20. https://doi.org/10.1016/j.memsci.2009.08.003.
  15. Rahimpour, A., Madaeni, S.S., Amirinejad, M., Mansourpanah, Y. and Zereshki, S. (2009), "The effect of heat treatment of PES and PVDF ultrafiltration membranes on morphology and performance for milk filtration", J. Membr. Sci., 330(1-2), 189-204. https://doi.org/10.1016/j.memsci.2008.12.059.
  16. Saghafi, R., Zarrebini, M., Semnani, D., Mahmoudi, M.R. ( 2016), "Novel method for treatment of hollow fiber membranes using hypochlorite", J. Textile Inst., 105(9), 962-970. https://doi.org/10.1080/00405000.2013.866333
  17. Sorour, M.H., Hani, H.A., Shaalan, H.F. and El-Toukhy, M. (2021), "Fabrication and characterization of hydrophobic PVDF-based hollow fiber membranes for vacuum membrane distillation of seawater and desalination brine", Egypt. J. Chem., 64(9), 4889-4899. https://doi.org/10.21608/ejchem.2021.68699.3500.
  18. Tewfik, S.R., Sorour, M.H., Shaalan, H.F., Hani, H.A. (2018), "Effect of spinning parameters of polyethersulfone based hollow fiber membranes on morphological and mechanical properties", Membr. Water Treat., 9(1), 43-51. https://doi.org/10.12989/mwt.2018.9.1.043
  19. Wang, D., Li, K. and Teo, W.K. (2000), "Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives", J. Membr. Sci., 178(1-2), 13-23. https://doi.org/10.1016/S0376-7388(00)00460-9.
  20. Xu, Q., Chen, Y., Xiao, T. and Yang, X. (2021), "A facile method to control pore structure of PVDF/SiO2 composite membranes for efficient oil/water purification", Membranes, 11(11), 803-819. https://doi.org/10.3390/membranes11110803.
  21. Yan, L., Hong, S., Li, M.L. and Li, Y.S. (2009), "Application of the Al2O3- PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research", Sep. Purif. Technol., 66(2), 347-352. https://doi.org/10.1016/j.seppur.2008.12.015.
  22. Yu, L.Y., Xu, Z.L., Shenb, H.M. and Yang, H. (2009), "Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method", J. Membr. Sci., 310(1-2), 567-576. https://doi.org/10.1016/j.memsci.2007.11.040.
  23. Zhao, Y.H., Qian, Y.L., Zhu, B.K. and Xu Y.Y. (2008), "Modification of porous poly(vinylidene fluoride) membrane using amphiphilic polymers with different structures in phase inversion process", J. Membr. Sci., 310(1-2), 567-576. https://doi.org/10.1016/j.memsci.2007.11.040.