DOI QR코드

DOI QR Code

Developing a comprehensive model of the optimal exploitation of dam reservoir by combining a fuzzy-logic based decision-making approach and the young's bilateral bargaining model

  • M.J. Shirangi (Department of Water Science and Engineering, Science and Research Branch, Islamic Azad University) ;
  • H. Babazadeh (Department of Water Science and Engineering, Science and Research Branch, Islamic Azad University) ;
  • E. Shirangi (Department of Civil Engineering, Karaj Branch, Islamic Azad University) ;
  • A. Saremi (Department of Water Science and Engineering, Science and Research Branch, Islamic Azad University)
  • 투고 : 2022.07.13
  • 심사 : 2023.03.27
  • 발행 : 2023.03.25

초록

Given the limited water resources and the presence of multiple decision makers with different and usually conflicting objectives in the exploitation of water resources systems, especially dam's reservoirs; therefore, the decision to determine the optimal allocation of reservoir water among decision-makers and stakeholders is a difficult task. In this study, by combining a fuzzy VIKOR technique or fuzzy multi-criteria decision making (FMCDM) and the Young's bilateral bargaining model, a new method was developed to determine the optimal quantitative and qualitative water allocation of dam's reservoir water with the aim of increasing the utility of decision makers and stakeholders and reducing the conflicts among them. In this study, by identifying the stakeholders involved in the exploitation of the dam reservoir and determining their utility, the optimal points on trade-off curve with quantitative and qualitative objectives presented by Mojarabi et al. (2019) were ranked based on the quantitative and qualitative criteria, and economic, social and environmental factors using the fuzzy VIKOR technique. In the proposed method, the weights of the criteria were determined by each decision maker using the entropy method. The results of a fuzzy decision-making method demonstrated that the Young's bilateral bargaining model was developed to determine the point agreed between the decisions makers on the trade-off curve. In the proposed method, (a) the opinions of decision makers and stakeholders were considered according to different criteria in the exploitation of the dam reservoir, (b) because the decision makers considered the different factors in addition to quantitative and qualitative criteria, they were willing to participate in bargaining and reconsider their ideals, (c) due to the use of a fuzzy-logic based decision-making approach and considering different criteria, the utility of all decision makers was close to each other and the scope of bargaining became smaller, leading to an increase in the possibility of reaching an agreement in a shorter time period using game theory and (d) all qualitative judgments without considering explicitness of the decision makers were applied to the model using the fuzzy logic. The results of using the proposed method for the optimal exploitation of Iran's 15-Khordad dam reservoir over a 30-year period (1968-1997) showed the possibility of the agreement on the water allocation of the monthly total dissolved solids (TDS)=1,490 mg/L considering the different factors based on the opinions of decision makers and reducing conflicts among them.

키워드

참고문헌

  1. Abdi-Dehkordi, M., Bozorg-Haddad, O., Salavitabar, A. and Goharian, E. (2021), "Developing a sustainability assessment framework for integrated management of water resources systems using distributed zoning and system dynamics approaches", Environ. Develop. Sust., 23, 16246-16282. https://doi.org/10.1007/s10668-021-01340-0
  2. Al-Furjan, M.S.H., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2021a), "Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory", Eur. J. Mech. A Solids., 86, 104169. https://doi.org/10.1016/j.euromechsol.2020.104169.
  3. Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R. and Kolahchi, R. (2021b) "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin Wall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.
  4. Babamiri, O. and Marofi, S. (2021), "A multi-objective simulation- optimization approach for water resource planning of reservoir-river systems based on a coupled quantity-quality model", Environ. Earth Sci., 80, 389. https://doi.org/10.1007/s12665-021-09681-9.
  5. Babamiri, O., Azari, A. and Marofi, S. (2022), "An integrated fuzzy optimization and simulation method for optimal quality-quantity operation of a reservoir-river system", Water Supply., 22(4), 4207-4229. https://doi.org/10.2166/ws.2022.045.
  6. Bazargan-Lari, M.R., Kerachian, R. and Mansoori, A. (2009), "A conflict-resolution model for the conjunctive use of surface and groundwater resources that considers water-quality issues: A case study", Environ. Manage., 43(3), 470-482. https://doi.org/10.1007/s00267-008-9191-6.
  7. Bin, O., Aimin, G., Chunxiang, H. and Shuyan, F. (2019), "Dynamic evaluation of water source safety based on fuzzy extension model", Membr. Water Treat., 10(2), 149-154. https://doi.org/10.12989/mwt.2019.10.2.149.
  8. Chang, D.Y. (1992), "Extent analysis and synthetic decision" Opt. Techniq. Appl., 1, 352-355.
  9. Chen, C.T. (2000), "Extensions of the TOPSIS for group decision-making under fuzzy environment", Fuzzy Set. Syst., 114(1), 1-9. https://doi.org/10.1016/S0165-0114(97)00377-1.
  10. Darbandsari, P., Kerachian, R., Malakpour-Estalaki, S. and Khorasani, H. (2020), "An agent-based conflict resolution model for urban water resources management", Sust. Cities Soc., 57. https://doi.org/10.1016/j.scs.2020.102112.
  11. Dursun, M., Karsak E.E. and Karadayi, M.A. (2011), "Assessment of health-care waste treatment alternatives using fuzzy multi-criteria decision making approaches", Resour. Conserv. Recycl., 57, 98-107. https://doi.org/10.1016/j.resconrec.2011.09.012.
  12. En-Nasyry, A., Chiron, P. and Archimede, Bernard. (2020), "Remediation of accidental river pollution: strategies based on the use of reservoirs", IFAC Papers OnLine., 53(2), 16605-16610. https://doi.org/10.1016/j.ifacol.2020.12.788.
  13. Eyni, A., Emami Skardi, M.J and Kerachian, R. (2021), "A regret-based behavioral model for shared water resources management: Application of the correlated equilibrium concept", Sci. Total Environ., 759, 143892. https://doi.org/10.1016/j.scitotenv.2020.143892.
  14. Haghighat, M., Nikoo, M.R., Parvinnia, M. and Sadegh, M. (2021), "Multi-objective conflict resolution optimization model for reservoir's selective depth water withdrawal considering water quality", Environ. Sci. Pollut. Res., 28, 3035-3050. https://doi.org/10.1007/s11356-020-10475-y.
  15. Hajmohammad, M.H., Kolahchi, R., Sharif Zarei, M. and Maleki, M. (2018a), "Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects", Compos. Struct., 187, 498-508. https://doi.org/10.1016/j.compstruct.2017.12.004.
  16. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018b), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002.
  17. Hati, S. and Panda, S.K. (2021), "Pareto optimality and game theory for pile design having conflicting objectives", Geomech. Eng., 27(1), 65-76. https://doi.org/10.12989/gae.2021.27.1.063.
  18. Hwang, C.L. and Yoon, K. (1981), Multiple attribute decision making: methods and applications, Springer-Verlag, Berlin. 
  19. Karimi, A., Nikoo, M. R., Kerachian, R., and Shirangi, E. (2011), "Assessment of water transport projects impact on long term water supply in Zayandehrood basin by multi-period optimization analysis", Iran. Water Res. J., 6(11), 153-163.
  20. Kerachian, R. and Karamouz, M. (2006), "Optimal reservoir operation considering the water quality issues: A stochastic conflict resolution approach", Water Resour. Res., 42, 1-15. https://doi.org/10.1029/2005WR004575.
  21. Kerachian, R. and Karamouz, M. (2007), "A stochastic conflict resolution model for water quality management in reservoir-river systems", Adv. Water Resour., 30(4), 866-882. https://doi.org/10.1016/j.advwatres.2006.07.005.
  22. Kerachian, R. and Shirangi, E. (2008), "A case study for conflict resolution in reservoir operation for water quantity and quality", World Water Environ. Resour. Congress, Hawaii.
  23. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020a), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A Solids., 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010.
  24. Keshtegar, B., Motezaker, M., Kolahchi, R. and Trung, N. T. (2020b), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin Wall. Struct., 154, 106820. https://doi.org/10.1016/j.tws.2020.106820.
  25. Kheirkhah Hasanzadeh, S., Saadatpour, M. and Afshar, A. (2020), "A fuzzy equilibrium strategy for sustainable water quality management in river-reservoir system", J. Hydrol., 586, 124892. https://doi.org/10.1016/j.jhydrol.2020.124892.
  26. Khorsandi, M., Ashofteh, P.S. and Azadi, F. (2022), "Multi-objective firefly integration with the K-nearest neighbor to reduce simulation model calls to accelerate the optimal operation of multi-objective reservoirs", Water Resour Manage., 36, 3283-3304. https://doi.org/10.1007/s11269-022-03201-5.
  27. Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary", Appl. Math. Modell., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.
  28. Kolahchi, R., Zhu, S.Z., Keshtegar, B. and Trung, N.T. (2020), "Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial", Aerosp. Sci. Technol., 98, 105656. https://doi.org/10.1016/j.ast.2019.105656.
  29. Malekmohammadi, B., Zahraei, B. and Kerachian, R. (2011), "Ranking solutions of multi-objective reservoir operation optimization models using multi-criteria decision analysis", Expert Syst. Appl., 38(6), 7851-7863. https://doi.org/10.1016/j.eswa.2010.12.119
  30. Mardani Najafabadi, M., Mirzaei, A. and Azarm, H. (2022), "Managing water supply and demand to achieve economic and environmental objectives: Application of mathematical programming and ANFIS models", Water Resour Manage., 36, 3007-3027. https://doi.org/10.1007/s11269-022-03178-1.
  31. Mojarabi-Kermani, A.R., Shirangi, E., Bordbar, A., Kaman Bedast, A.A. and Masjedi, A.R. (2018), "Modeling of decision-makers negotiations in reservoir operation with respect to water quality and environmental issues", Membr. Water Treat., 9(6), 421-434. https://doi.org/10.12989/mwt.2018.9.6.421.
  32. Mojarabi-Kermani, A.R., Shirangi, E., Bordbar, A., Kaman Bedast, A.A. and Masjedi, A.R. (2019), "Stochastic optimal reservoir operation management, applying group conflict resolution model", Water Resour. Manag., 33 (8), 2847-2865. https://doi.org/10.1007/s11269-019-02271-2.
  33. Mosadeghi, R., Warnken, Tomlinson, R. and Mirfendersk, H. (2012), "Uncertainty analysis in the application of multi-criteria decision-making methods in Australian strategic environmental decisions", J. Environ. Plan. Manag., 56(8), 1097-1124. https://doi.org/10.1080/09640568.2012.717886.
  34. Napel, S. (2002), Bilateral Bargaining: Theory and Applications. Springer-Verlag, Berlin.
  35. Nikoo, M.R., Gavahi, K. and Khoramshokooh, N. (2019), "A multi-objective simulation-optimization approach for design of cutoff walls and apron of diversion dams", Iran J. Sci. Technol. Trans. Civil Eng., 43, 241-252. https://doi.org/10.1007/s40996-018-0134-z.
  36. Niksokhan, M.H., Kerachian, R. and Amin, P. (2009), "A stochastic conflict resolution model for trading pollutant discharge permits in river systems", Environ. Monitor. Assess., 154(1), 219-232. https://doi.org/10.1007/s10661-008-0390-7.
  37. Niu, W.J., Feng, Z.K. and Li, Y.R. (2021), "Cooperation search algorithm for power generation production operation optimization of cascade hydropower reservoirs", Water Resour. Manage., 35, 2465-2485. https://doi.org/10.1007/s11269-021-02842-2.
  38. Opricovic, S. (1998), Multicriteria Optimization of Civil Engineering Systems, Faculty of Civil Engineering, Belgrade.
  39. Opricovic, S. (2007), "Fuzzy VIKOR with an application to water resources planning", Expert Syst. Appl., 38(10), 12983-12990. https://doi.org/10.1016/j.eswa.2011.04.097.
  40. Opricovic, S. and Tzeng, G.H. (2011), "Extended VIKOR method in comparison with outranking methods", Eur. J. Operat. Res., 178(2), 514-529. https://doi.org/10.1016/j.ejor.2006.01.020.
  41. Olson, D.L. (2004), "Comparison of weights in TOPSIS models", Math. Comput. Modell., 40(7-8), 721-727. https://doi.org/10.1016/j.mcm.2004.10.003.
  42. Peche, R. and Rodriguez, E. (2009), "Environmental impact assessment procedure: A new approach based on fuzzy logic", Environ. Impact Assess. Rev., 29(5), 275-283. https://doi.org/10.1016/j.eiar.2009.01.005.
  43. Ploskas, N., Papathanasiou, J. and Tsaples, G. (2017), "Implementation of an extended fuzzy VIKOR method based on triangular and trapezoidal fuzzy linguistic variables and alternative deffuzification techniques", Proceedings of the Decision Support Systems VII. Data, Information and Knowledge Visualization in Decision Support Systems: Third International Conference, ICDSST 2017, Namur, Belgium, May.
  44. Rashidi, B., Shirangi, E. and Baymaninezhad M. (2018),"Multiple criteria decision making method for selecting of sealing element for earth dams considering long and short terms goals", Wind Struct., 26(2), 69-74. https://doi.org/10.12989/WAS.2018.26.2.069
  45. Rousis, K., Moustakas, k., Malamis, S., Papadopoulos, A. and Loizidou, M. (2008), "Multi-criteria analysis for the determination of the best WEEE management scenario in Cyprus", Waste Manag., 28(10), 1941-1954. https://doi.org/10.1016/j.wasman.2007.12.001.
  46. Saadatpour, M., Afshar, A. and Sandoval Solis, S. (2020), "Surrogate-based multiperiod, multiobjective reservoir operation optimization for quality and quantity management", J. Water Resour. Plan Manag., 146(8).
  47. Soltani, M. A., Karimi, A., Bazargan-lari, M. R. and Shirangi, E. (2008), "Stochastic multi-purpose reservoir operation planning by scenario optimization and differential evolutionary algorithm", J. Appl Sci., 8(22), 4186-4191. https://doi.org/10.3923/jas.2008.4186.4191
  48. Soltani, F., Kerachian, R., and Shirangi, E. (2010), "Developing operating rules for reservoirs considering the water quality issues: Application of ANFIS-based surrogate models", Expert Syst. Appl., 37, 6639-6645. https://doi.org/10.1016/j.eswa.2010.03.057.
  49. Shirang, E. and Kerachian, R. (2007), "A simplified model for optimal reservoir operation considering the water quality issues", Proceedings of CEMEPS/SECOTOX Conference, Skiathos Island, Greece, June.
  50. Shirangi, E., Kerachian, R. and Shafai Bajestan, M. (2008), "A simplified model for optimal reservoir operation considering the water quality issues: Application of the Young conflict resolution theory", Environ Monit. Assess., 146, 77-89. https://doi.org/10.1007/s10661-007-0061-0.
  51. Shirangi, E., khaleghi, S., Baghaei, F., Mansoori, A. and Pourmand, E. (2016), "Developing real time optimal reservoir operation rules using bayesian networks: Application of group conflict resolution model", J. Water Soil Resour. Conserv., 5, 1-11.
  52. Shirangi, M. J., Babazadeh, H., Shirangi, E. and Saremi, A. (2023), "Determining qualitative-quantitative optimal exploitation policies of the dam reservoir by combining the decision-making model based on fuzzy logic and game theory: A case study of the 15 Khordad Dam", Iran. Water Res. J., 17(1). https://doi.org/10.22034/iwrj.2022.14151.2477
  53. Sedighkia, M., Datta, B. and Abdoli, A. (2022), "Reducing impacts of rice fields nitrate contamination on the river ecosystem by a coupled SWAT reservoir operation optimization model", Arab. J. Geosci., 15, 160. https://doi.org/10.1007/s12517-022-09439-y.
  54. Sedighkia, M. and Datta, B. (2022), "Using evolutionary algorithms for continuous simulation of long-term reservoir inflows", Proceedings of the Institution of Civil Engineers - Water Management., 175(2), 67-77. https://doi.org/10.1680/jwama.20.00128.
  55. Vanda, S., Nikoo, M.R., Hashempour, P., Al-Wardy, M., Adamowski, J.F., Simunek, J. and Gandomi, A.H. (2022), "Reservoir operation under accidental MTBE pollution: A graph-based conflict resolution framework considering spatial-temporal-quantitative uncertainties", J. Hydrol., 605, 127313. https://doi.org/10.1016/j.jhydrol.2021.127313.
  56. Young, H.P. (1993), "An evolutionary model of bargaining", J. Econ. Theory, 59(1), 145-168. https://doi.org/10.1006/jeth.1993.1009
  57. Yue, Z. (2012), "Extension of TOPSIS to determine weight of decision maker for group decision making problems with uncertain information", Expert Syst. Appl., 39(7), 6343-6350. https://doi.org/10.1016/j.eswa.2011.12.016.
  58. Zanjanian, H., Niksokhan, M.H. Ghorbani, M. and Rezaei, A.R. (2022), "A novel framework for water right conflict resolution considering actors' power and inter-organizational relationships analysis", J. Hydroinform., 24(3), 622-641. https://doi.org/10.2166/hydro.2022.166.
  59. Zhang, Y.F. and J. Thorburn, P. (2022), "A deep surrogate model with spatio-temporal awareness for water quality sensor measurement", Expert Syst. Appl., 200, 116914. https://doi.org/10.1016/j.eswa.2022.116914.