DOI QR코드

DOI QR Code

Evaluation of Genetic Parameters of Growth Characteristics and Basic Density of Eucalyptus pellita Clones Planted at Two Different Sites in East Kalimantan, Indonesia

  • Alfia Dewi FADWATI (Faculty of Forestry, Universitas Gadjah Mada) ;
  • Fanny HIDAYATI (Faculty of Forestry, Universitas Gadjah Mada) ;
  • Mohammad NA'IEM (Faculty of Forestry, Universitas Gadjah Mada)
  • Received : 2022.12.07
  • Accepted : 2023.05.01
  • Published : 2023.05.25

Abstract

Eucalyptus pellita is one of the fast-growing tree species and has become predominant in Indonesian forest plantations. Meanwhile, tree breeding programs with clone development are the best way to provide greater genetic advantages. A better understanding of genetic control on growth and basic density in E. pellita is important for increasing wood productivity and quality. In this study, growth characteristics (tree height, diameter, and volume), basic density and its genetic parameters (heritability, genetic gain and genetic correlation) were determined. The number of clones tested in both trials was 50, divided into 5 blocks, and 5 trees/plot. The results showed that there were significant differences in growth and basic density among clones. There was an interaction between genetics and the environment further indicating the existence of unstable clones. The high heritability was found in tree height (0.82-0.86), diameter (0.82-0.90), and basic density (0.91-0.93). This implies that E. pellita has good opportunities for genetic improvement to increase wood productivity and quality. In addition, the results of genetic correlations among growth characteristics (height, diameter, and volume) and basic density showed positive moderate to highly significant value. It is suggested that these characters may be used to the advantage of the breeder for bringing improvement in these traits simultaneously. Therefore, this study provides important information of the genetic improvement of wood quality in E. pellita in Indonesia.

Keywords

Acknowledgement

We are grateful to the management of PT. Itci Hutani Manunggal (IHM) and PT. Riau Andalan Pulp & Paper (RAPP) for their commitment to support long term research and publication of results. We thank R&D manager and Silviculture Team at the Research and Development, PT. IHM for various support, assistance in experiment works and data collection. This study was also funded by Thesis Recognition Program Year of 2022 Universitas Gadjah Mada, Indonesia (Letter of Assign- ment Number: 5722/UN1.P.III/Dit-Lit/PT.01.05/2022).

References

  1. Apiolaza, L.A., Raymond, C.A., Yeo, B.J. 2005. Genetic variation of physical and chemical wood properties of Eucalyptus globulus. Silvae Genetica 54(4/5): 160-166. https://doi.org/10.1515/sg-2005-0024
  2. Augustina, S., Wahyud, I., Darmawan, I.W., Malik, J., Basri, E., Kojima, Y. 2020. Specific gravity and dimensional stability of boron-densified wood on three lesser-used species from Indonesia. Journal of the Korean Wood Science and Technology 48(4): 458-471. https://doi.org/10.5658/WOOD.2020.48.4.458
  3. Barua, S.K., Lehtonen, P., Pahkasalo, T. 2014. Plantation vision: Potentials, challenges and policy options for global industrial forest plantation development. International Forestry Review 16(2): 117-127. https://doi.org/10.1505/146554814811724801
  4. Binkley, D., Campoe, O.C., Alvares, C., Carneiro, R.L., Cegatta, I., Stape, J.L. 2017. The interactions of climate, spacing and genetics on clonal Eucalyptus plantations across Brazil and Uruguay. Forest Ecology and Management 405: 271-283. https://doi.org/10.1016/j.foreco.2017.09.050
  5. Borralho, N. M. G., Cotterill, P. P., Kanowski, P. J. 1992. Genetic parameters and gains expected from selection for dry weight in Eucalyptus globulus ssp. globulus in Portugal. For Sci (38): 80-94.
  6. Bouvet, J.M., Vigneron, P., Saya, A. 2005. Phenotypic plasticity of growth trajectory and ontogenic allometry in response to density for Eucalyptus hybridclones and families. Annals of Botany 96(5): 811-821. https://doi.org/10.1093/aob/mci231
  7. Burdon, R.D., Aimers-Halliday, J. 2006. Managing risk in clonal forestry. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 1(035): 9.
  8. Cruz, C.D., Castoldi, F.L. 1991. Decomposicao da interacao genotipos × ambientes em partes simples e complexa. Revista Ceres 38(219): 422-430.
  9. Dhillon, G.P.S., Singh, A. 2010. Variation in growth traits among progenies of Eucalyptus tereticornis Sm. under flood-plain conditions of Punjab. Indian Journal of Agroforestry 12(1): 91-94.
  10. dos Santos, G.A., Nunes, A.C.P., de Resende, M.D.V., Silva, L.D., Higa, A., de Assis, T.F. 2016. An index combining volume and pilodyn penetration to study stability and adaptability of Eucalyptus multi-species hybrids in Rio Grande do Sul, Brazil. Australian Forestry 79(4): 248-255. https://doi.org/10.1080/00049158.2016.1237253
  11. Downes, G.M., Lausberg, M., Potts, B.M., Pilbeam, D.L., Bird, M., Bradshaw, B. 2018. Application of the IML Resistograph to the infield assessment of basic density in plantation Eucalypts. Australian Forestry 81(3): 177-185. https://doi.org/10.1080/00049158.2018.1500676
  12. Gao, S., Wang, X., Brashaw, B.K., Ross, R.J., Wang, L. 2012. Rapid assessment of wood density of standing tree with nondestructive methods: A review. In: Changsha, China, Proceedings of 2012 International Conference on Biobase Material Science and Engineering, pp. 262-267.
  13. Gendvilas, V., Downes, G.M., Neyland, M., Hunt, M., Jacobs, A., O'Reilly-Wapstra, J. 2021. Friction correction when predicting wood basic density using drilling resistance. Holzforschung 75(6): 508-516. https://doi.org/10.1515/hf-2020-0156
  14. Ghani, R.S.M., Lee, M.D. 2021. Challenges of wood modification process for plantation Eucalyptus: A review of Australian setting. Journal of the Korean Wood Science and Technology 49(2): 191-209.
  15. Griffin, A.R. 2014. Clones or improved seedlings of Eucalyptus? Not a simple choice. International Forestry Review 16(2): 216-224. https://doi.org/10.1505/146554814811724793
  16. Hadi, Y.S., Massijaya, M.Y., Zaini, L.H., Pari, R. 2019. Physical and mechanical properties of methyl methacrylate-impregnated wood from three fast-growing tropical tree species. Journal of the Korean Wood Science and Technology 47(3): 324-335. https://doi.org/10.5658/WOOD.2019.47.3.324
  17. Hai, P.H., Jansson, G., Harwood, C., Hannrup, B., Thinh, H.H. 2008. Genetic variation in growth, stem straightness and branch thickness in clonal trials of Acacia auriculiformis at three contrasting sites in Vietnam. Forest Ecology and Management 255(1): 156-167. https://doi.org/10.1016/j.foreco.2007.09.017
  18. Hardiyanto, E.B., Inail, M.A., Sadanandan Nambiar, E.K. 2021. Productivity of Eucalyptus pellitain Sumatra: Acacia mangium legacy, response to phosphorus, and site variables for guiding management. Forests 12(9): 1186.
  19. Hardner, C.M., Dieters, M., Dale, G., DeLacy, I., Basford, K.E. 2010. Patterns of genotype-by-environment interaction in diameter at breast height at age 3 for Eucalypt hybrid clones grown for reafforestation of lands affected by salinity. Tree Genet Genomes 6(6): 833-851. https://doi.org/10.1007/s11295-010-0295-9
  20. Harrand, L., Hernandez, J.J.V., Upton, J.L., Valverde, G.R. 2009. Genetic parameters of growth traits and wood density in Eucalyptus grandis progenies planted in Argentina. Silvae Genetica 58: 1-2. https://doi.org/10.1515/sg-2009-0001
  21. Harwood, C.E., Alloysius, D., Pomroy, P., Robson, K.W., Haines, N.W. 1997. Early growth and survival of Eucalyptus pellita provenances in a range of tropical environments, compared with E. grandis, E. urophylla and Acacia mangium. New Forests 14(3): 203-219. https://doi.org/10.1023/A:1006524405455
  22. Hidayati, F., Lukmandaru, G., Indrioko, S., Sunarti, S., Nirsatmanto, A. 2019. Variation in tree growth characteristics, pilodyn penetration, and stress-wave velocity in 65 families of Acacia mangiumtrees planted in Indonesia. Journal of the Korean Wood Science and Technology 47(5): 633-643. https://doi.org/10.5658/WOOD.2019.47.5.633
  23. Hodge, G.R., Dvorak, W.S. 2012. Growth potential and genetic parameters of four Mesoamerican pines planted in the Southern Hemisphere. Southern Forests: A Journal of Forest Science 74(1): 27-49. https://doi.org/10.2989/20702620.2012.686192
  24. Hung, T.D., Brawner, J.T., Meder, R., Lee, D.J., Southerton, S., Thinh, H.H., Dieters, M.J. 2014. Estimates of genetic parameters for growth and wood properties in Eucalyptus pellita F. Muell. to support tree breeding in Vietnam. Annals of Forest Science 72(2): 205-217.
  25. Iswanto, A.H., Tarigan, F.O., Susilowati, A., Darwis, A., Fatriasari, W. 2021. Wood chemical compositions of Raru species originating from central Tapanuli, North Sumatra, Indonesia: Effect of differences in wood species and log positions. Journal of the Korean Wood Science and Technology 49(5): 416-429. https://doi.org/10.5658/WOOD.2021.49.5.416
  26. Kartikaningtyas, D., Nirsatmanto, A., Sunarti, S., Setyaji, T., Handayani, B.R., Surip. 2020. Trends of genetic parameters and stand volume productivity of selected clones of Eucalyptus pellita observed in clonal trials in Wonogiri, Central Java. IOP Conference Series: Earth and Environmental Science 522: 012005.
  27. Kha, L.D., Harwood, C.E., Duc Kien, N., Baltunis, B.S., Dinh Hai, N., Huy Thinh, H. 2012. Growth and wood basic density of Acacia hybrid clones at three locations in Vietnam. New Forests 43(1): 13-29. https://doi.org/10.1007/s11056-011-9263-y
  28. Khasa, P.D., Vallee, G., Li, P., Magnussen, S., Camire, C., Bousquet, J. 1995. Performance of five tropical tree species on four sites in Zaire. The Commonwealth Forestry Review 74(2): 129-137.
  29. Kien, N.D., Jansson, G., Harwood, C., Almqvist, C. 2010. Clonal variation and genotype by environment interactions in growth and wood density in Eucalyptus camaldulensis at three contrasting sites in Vietnam. Silvae Genetica 59(1): 17-28. https://doi.org/10.1515/sg-2010-0003
  30. Kien, N.D., Quang, T.H., Jansson, G., Harwood, C., Clapham, D., von Arnold, S. 2009. Cellulose content as a selection trait in breeding for kraft pulp yield in Eucalyptus urophylla. Annals of Forest Science66(7): 711.
  31. Kim, J.Y., Kim, S.C., Kim, B.R. 2020. Microfibril angle characteristics of Korean pine trees from depending on provinces. Journal of the Korean Wood Science and Technology 48(4): 569-576. https://doi.org/10.5658/WOOD.2020.48.4.569
  32. Latifah, S., Villanueva, T.R., Carandang, M.G., Bantayan, N.C., Florece, L.M. 2014. Predicting growth and yield models for Eucalyptus species in Aek Nauli, North Sumatera, Indonesia. Agriculture, Forestry and Fisheries 3(4): 209-216. https://doi.org/10.11648/j.aff.20140304.11
  33. Lee, K.H., Jo, S.Y., Kim, S.C. 2022. The relationship between tree-ring growth in Pinus densiflora S. et Z. and the corresponding climatic factors in Korea. Journal of the Korean Wood Science and Technology 50(2): 81-92. https://doi.org/10.5658/WOOD.2022.50.2.81
  34. Lee, S.S. 1993. Diseases. In: Acacia mangium Growing and Utilization, Ed. by Awang, K. and Taylor, D. Winrock International, Bangkok, Thailand.
  35. Leksono, B., Kurinobu, S. 2005. Trend of within family-plot selection practised in three seedling seed orchards of Eucalyptus pellita in Indonesia. Journal of Tropical Forest Science 17(2): 235-242.
  36. Leslie, A.D., Mencuccini, M., Perks, M. 2012. The potential for Eucalyptus as a wood fuel in the UK. Applied Energy 89(1): 176-182. https://doi.org/10.1016/j.apenergy.2011.07.037
  37. Libby, W.J., Rauter, R.M. 1984. Advantages of clonal forestry. The Forestry Chronicle 60(3): 145-149. https://doi.org/10.5558/tfc60145-3
  38. Luechanimitchit, P., Luangviriyasaeng, V., Laosakul, S., Pinyopusarerk, K., Bush, D. 2017. Genetic parameter estimates for growth, stem-form and branching traits of Casuarina junghuhniana clones grown in Thailand. Forest Ecology and Management 404: 251-257. https://doi.org/10.1016/j.foreco.2017.08.030
  39. Lukmandaru, G., Zumaini, U.F., Soeprijadi, D., Nugroho, W.D., Susanto, M. 2016. Chemical properties and fiber dimension of Eucalyptus pellita from the 2nd generation of progeny tests in Pelahairi, South Borneo, Indonesia. Journal of the Korean Wood Science and Technology 44(4): 571-588. https://doi.org/10.5658/WOOD.2016.44.4.571
  40. Luo, J.Z., Arnold, R.J., Cao, J.G., Lu, W.H., Ren, S.Q., Xie, Y.J., Xu, L.A. 2012. Variation in pulp wood traits between Eucalypt clones across sites and implications for deployment strategies. Journal of Tropical Forest Science 24(1): 70-82.
  41. Makouanzi, G., Chaix, G., Nourissier, S., Vigneron, P. 2017. Genetic variability of growth and wood chemical properties in a clonal population of Eucalyptus urophylla × Eucalyptus grandis in the Congo. Southern Forest: A Journal of Forest Science 80(2): 151-158. https://doi.org/10.2989/20702620.2017.1298015
  42. Nambiar, E.K.S., Harwood, C.E., Mendham, D.S. 2018. Paths to sustainable wood supply to the pulp and paper industry in Indonesia after diseases have forced a change of species from acacia to eucalypts. Australian Forestry 81(3): 148-161. https://doi.org/10.1080/00049158.2018.1482798
  43. Oliveira, T.W.G., Paula, R.C., Moraes, M.L.T., Alvares, C.A., Miranda, A.C., Silva, P.H.M. 2018. Stability and adaptability for wood volume in the selection of Eucalyptus saligna in three environments. Pesquisa Agropecuaria Brasileira, Brasilia 53(5): 611-619. https://doi.org/10.1590/s0100-204x2018000500010
  44. Osorio, L.F., White, T.L., Huber, D.A. 2001. Age trends of heritabilities and genotype-by-environment interactions for growth traits and wood density from clonal trials of Eucalyptus grandis Hill ex Maiden. Silvae Genetica 50(1): 30-36.
  45. Pliura, A., Zhang, S.Y., Mackay, J., Bousquet, J. 2007. Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials. Forest Ecology and Management 238(1-3): 92-106. https://doi.org/10.1016/j.foreco.2006.09.082
  46. Prasetyo, A., Aiso, H., Ishiguri, F., Wahyudi, I., Wijaya, I.P.G., Ohshima, J., Yokota, S. 2017. Variations on growth characteristics and wood properties of three Eucalyptus species planted for pulpwood in Indonesia. Tropics 26(2): 59-69. https://doi.org/10.3759/tropics.MS16-15
  47. Ramadan, A., Indrioko, S., Hardiyanto, E.B. 2018. Genetic parameters for growth and basic density of Eucalyptus pellita F. Muell clones at two different sites in East Kalimantan. Jurnal Pemuliaan Tanaman Hutan 12(2): 115-125. https://doi.org/10.20886/jpth.2018.12.2.115-125
  48. Ramburan, S., Zhou, M., Labuschagne, M. 2011. Interpretation of genotype × environment interaction of surgancane: Identifying significant envornmental factors. Field Crops Research 124: 392-399. https://doi.org/10.1016/j.fcr.2011.07.008
  49. Rezende, G.D.S.P., de Resende, M.D.V., de Assis, T.F. 2014. Eucalyptus Breeding for Clonal Forestry. In: Challenges and Opportunities for the World's Forests in the 21st Century, Ed. by Fenning, T. Springer, Dordrecht, Netherlands.
  50. Santos, G.A., Resende, M.D.V., Silva, L.D., Higa, A., Assis, T.F. 2015. Interacao genotypos × ambientes para productividade de lones de Eucalyptus no Rio Grande do Sul. Revista Arvore 39(1): 81-91. https://doi.org/10.1590/0100-67622015000100008
  51. Schulz, H.R., Acosta, A.P., Barbosa, K.T., Junior, M.A.P.S., Gallio, E., Delucis, R.A., Gatto, D.A. 2021. Chemical, mechanical, thermal, and colorimetric features of the thermally treated Eucalyptus grandis wood planted in Brazil. Journal of the Korean Wood Science and Technology 49(3): 226-233. https://doi.org/10.5658/WOOD.2021.49.3.226
  52. Silva, J.C., Potts, B.M., Tilyard, P. 2013. Stability of genetic effects across clonal and seedling populations of Eucalyptus globulus with common parentage. Forest Ecology and Management 291: 427-435. https://doi.org/10.1016/j.foreco.2012.11.005
  53. Wendling, I., Trueman, S.J., Xavier, A. 2014. Maturation and related aspects in clonal forestry: Part II: Reinvigoration, rejuvenation and juvenility maintenance. New Forests 45(4): 473-486. https://doi.org/10.1007/s11056-014-9415-y
  54. West, P.W. 2009. Tree and Forest Measurement. Springer, Dordrecht, Netherlands.
  55. White, T.L., Hodge, G.R. 1989. Predicting Breeding Values with Applications in Forest Tree Improvement. Springer, Dordrecht, Netherlands.
  56. White, T.L., Thomas Adams, W., Neale, D.B. 2007. Forest Genetics. CABI, Wallingford, UK.
  57. Wu, S.J., Xu, J., Li, G., Risto, V., Du, Z., Lu, Z., Li, B., Wang, W. 2011a. Genotypic variation in wood properties and growth traits of Eucalyptus hybrid clones in southern China. New Forests 42(1): 35-50. https://doi.org/10.1007/s11056-010-9235-7
  58. Wu, S.J., Xu, J.M., Li, G.Y., Risto, V., Lu, Z.H., Li, B.Q., Wang, W. 2011b. Estimation of basic density and modulus of elasticity of Eucalypt clones in southern China using non-destructive methods. Journal of Tropical Forest Science 23(1): 51-56.
  59. Xiao, Y., Wang, J., Yun, H., Yang, G., Ma, J., Qu, G. 2021. Genetic evaluation and combined selection for the simultaneous improvement of growth and wood properties in Catalpa bungee clones. Forests 12(7): 868.
  60. Yang, H., Weng, Q., Li, F., Zhou, C., Li, M., Chen, S., Ji, H., Gan, S. 2018. Genotypic variation and genotype-by-environment interactions in growth and wood properties in a cloned Eucalyptus urophylla × E. tereticornis family in southern China. Forest Science 64(3): 225-232. https://doi.org/10.1093/forsci/fxx011
  61. Zobel, B., Talbert, J. 1984. Applied Forest Tree Improvement. John Wiley & Sons, New York, NY, USA.