DOI QR코드

DOI QR Code

Anti-Termite Activity of Azadirachta excelsa Seed Kernel and Its Isolated Compound against Coptotermes curvignathus

  • Morina ADFA (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu) ;
  • Khafit WIRADIMAFAN (Master of Chemistry Study Program, Faculty of Mathematics and Natural Sciences, University of Bengkulu) ;
  • Ricky Febri PRATAMA (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu) ;
  • Angga SANJAYA (Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University) ;
  • Deni Agus TRIAWAN (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu) ;
  • Salprima YUDHA S. (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Bengkulu) ;
  • Masayuki NINOMIYA (Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University) ;
  • Mohamad RAFI (Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University) ;
  • Mamoru KOKETSU (Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University)
  • 투고 : 2022.12.18
  • 심사 : 2023.03.01
  • 발행 : 2023.05.25

초록

Azadirachta excelsa, is a plant belonging to the same genus as Indian neem (Azadirachta indica), and its use as a pesticide is reported by few studies. Despite being a different species, it is expected to have the same biopesticide potential as A. indica. Therefore, this study aims to investigate the anti-termite activity of n-hexane and methanol extracts of A. excelsa seed kernel at various concentrations against Coptotermes curvignathus. The methanol extract demonstrated greater termicidal activity than n-hexane at doses test of 2%, 4%, and 8%. It also showed 100% termite mortality on the third day of administering the 8% dose. According to the gas chromatography with mass spectrometry data, the putative main components of the n-hexane extract were hexadecanoic acid, ethyl ester (18.99%), 9,12-octadecadienoic acid (Z,Z)- (16.31%), and 9-octadecenal (16.23%). In contrast, the principal constituents of methanol extract were patchouli alcohol (28.1%), delta-guaiene (15.15%), and alpha-guaiene (11.93%). Furthermore, limonoids profiling of A. excelsa methanol extract was determined using Ultrahigh-performance liquid chromatography coupled with quadrupole-Orbitrap high-resolution mass spectrometry. The number of limonoids identified tentatively was fifteen, such as 6-deacetylnimbin, nimbolidin C, nimbolide, 6-acetylnimbandiol, 6-deacetyl-nimbinene, salannol, 28-deoxonimbolide, gedunin, nimbandiol, epoxyazadiradione, azadirone, 2',3'-dihydrosalannin, marrangin, nimbocinol, and azadirachtin. They were the same as those reported in the seed and leaves of A. indica, but its largest component in A. excelsa was 6-deacetylnimbin. As a result, the presence of these compounds may be responsible for the anti-termite activity of A. excelsa seed kernel extract. Additionally, column chromatography of methanol extract yielded 6-deacetylnimbin, which was found to be antifeedant and termiticide against C. curvignathus.

키워드

과제정보

The authors are grateful to the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia (PDKN Grant No. 105/E5/PG.02.00.PT/2022), for financial and in-kind support from Koketsu Lab.

참고문헌

  1. Aarthy, T. 2019. Limonoid biosynthesis in Azadirachta indica: Characterization of pathway genes and analysis of labeled metabolites through stable isotope feeding. Ph.D. Thesis, Academy of Scientific and Innovative Research (AcSIR), India.
  2. Abdullah, F., Subramanian, P., Ibrahim, H., Abdul Malek, S.N., Lee, G.S., Hong, S.L. 2015. Chemical composition, antifeedant, repellent, and toxicity activities of the rhizomes of galangal, Alpinia galangaagainst Asian subterranean termites, Coptotermes gestroi and Coptotermes curvignathus (Isoptera: Rhinotermitidae). Journal of Insect Science 15(1): 175.
  3. Adfa, M., Hattori, Y., Ninomiya, M., Funahashi, Y., Yoshimura, T., Koketsu, M. 2013. Chemical constituents of Indonesian plant Protium javanicum Burm. f. and their antifeedant activities against Coptotermes formosanus Shiraki. Natural Product Research 27(3): 270-273. https://doi.org/10.1080/14786419.2012.665917
  4. Adfa, M., Livandri, F., Meita, N.P., Manaf, S., Ninomiya, M., Gustian, I., Putranto, A.M.H., Supriati, R., Koketsu, M. 2015. Termiticidal activity of Acorus calamus Linn. rhizomes and its main constituents against Coptotermes curvignathus Holmgren. Journal of Asia-Pacific Entomology 18(1): 47-50. https://doi.org/10.1016/j.aspen.2014.10.012
  5. Adfa, M., Romayasa, A., Kusnanda, A.J., Avidlyandi, A., Yudha, S.S., Banon, C., Gustian, I. 2020. Chemical components, antitermite and antifungal activities of Cinnamomum parthenoxylon wood vinegar. Journal of the Korean Wood Science and Technology 48(1): 107-116. https://doi.org/10.5658/WOOD.2020.48.1.107
  6. Adhikari, K., Bhandari, S., Niraula, D., Shrestha, J. 2020. Use of neem (Azadirachta indica A. Juss) as a biopesticide in agriculture: A review. Journal of Agriculture and Applied Biology 1(2): 100-117. https://doi.org/10.11594/jaab.01.02.08
  7. Ahmed, S., Fatima, R., Hassan, B. 2020. Evaluation of different plant derived oils as wood preservatives against subterranean termite Odontotermes obesus. Maderas. Ciencia y Tecnologia 22(1): 109-120.
  8. Anitha, G., Raj, J.J.L., Krishnan, V.R., Narasimhan, S., Anand Solomon, K., Rajan, S.S. 2007. Semi-synthetic modification of nimbolide to 6-homodesacetyl-nimbin and 6-desacetylnimbin and their cytotoxic studies. Journal of Asian Natural Products Research 9(1): 73-78. https://doi.org/10.1080/10286020500383742
  9. Anshul, N., Kalra, A., Singh, D. 2014. Biological effect of sweet wormwood, Artemisia annua methanol extracts and essential oil against Helicoverpa armigera Hub. (Lepidoptera: Noctuidae). Journal of Entomology and Zoology Studies 2(6): 304-307.
  10. Arinana, A., Rahman, M.M., Silaban, R.E.G., Himmi, S.K., Nandika, D. 2022. Preference of subterranean termites among community timber species in Bogor, Indonesia. Journal of the Korean Wood Science and Technology 50(6): 458-474. https://doi.org/10.5658/WOOD.2022.50.6.458
  11. Arsyad, W.O.M., Efiyanti, L., Trisatya, D.R. 2020. Termiticidal activity and chemical components of bamboo vinegar against subterranean termites under different pyrolysis temperatures. Journal of the Korean Wood Science and Technology 48(5): 641-650. https://doi.org/10.5658/WOOD.2020.48.5.641
  12. Cui, B., Chai, H., Constant, H.L., Santisuk, T., Reutrakul, V., Beecher, C.W.W., Farnsworth, N.R., Cordell, G.A., Pezzuto, J.M., Douglas Kinghorn, A. 1998. Limonoids from Azadirachta excelsa. Phytochemistry 47(7): 1283-1287. https://doi.org/10.1016/S0031-9422(97)00711-5
  13. David Morgan, E., Wilson, I.D. 1999. 8.05: Insect Hormones and Insect Chemical Ecology. In: Comprehensive Natural Products Chemistry, Ed. by Barton, S.D., Nakanishi, K. and Meth-Cohn, O. Elsevier, Amsterdam, Netherlands.
  14. de Fatima Inacio, M., de Carvalho, M.G. 2012. Insecticidal activity of dichloromethane and methanolic extracts of Azadirachta indica (A. Juss), Melia azedarach (L.) and Carapa guianenses (Aubl.) (Meliaceae) on the subterranean termite Coptotermes gestroi (Wasmann) (Isoptera, Rhinotermitidae). Bioscience Journal 28(5): 676-683.
  15. Ella Nkogo, L.F., Bopenga, C.S.A.B., Ngohang, F.E., Mengome, L.E., Aboughe Angone, S., Edou Engonga, P. 2022. Phytochemical and anti-termite efficiency study of Guibourtia tessmanii (Harms) J. Leonard (Kevazingo) bark extracts from Gabon. Journal of the Korean Wood Science and Technology 50(2): 113-125. https://doi.org/10.5658/WOOD.2022.50.2.113
  16. El-Wakeil, N.E. 2013. Retracted article: Botanical pesticides and their mode of action. Gesunde Pflanzen 65: 125-149. https://doi.org/10.1007/s10343-013-0308-3
  17. Endo, T., Kita, M., Shimada, T., Moriguchi, T., Hidaka, T., Matsumoto, R., Hasegawa, S., Omura, M. 2002. Modification of limonoid metabolism in suspension cell culture of Citrus. Plant Biotechnology 19(5): 397-403. https://doi.org/10.5511/plantbiotechnology.19.397
  18. Govindachari, T.R., Narasimhan, N.S., Suresh, G., Partho, P.D., Gopalakrishnan, G. 1996. Insect antifeedant and growth-regulating activities of salannin and other C-seco limonoids from neem oil in relation to azadirachtin. Journal of Chemical Ecology 22(8): 1453-1461. https://doi.org/10.1007/BF02027724
  19. Grace, J.K., Yates, J.R. 1992. Behavioural effects of a neem insecticide on Coptotermes formosanus (Isoptera: Rhinotermitidae). Tropical Pest Management 38(2): 176-180. https://doi.org/10.1080/09670879209371679
  20. Hadi, Y.S., Massijaya, M.Y., Abdillah, I.B., Pari, G., Arsyad, W.O.M. 2020. Color change and resistance to subterranean termite attack of mangium (Acacia mangium) and sengon (Falcataria moluccana) smoked wood. Journal of the Korean Wood Science and Technology 48(1): 1-11. https://doi.org/10.5658/WOOD.2020.48.1.1
  21. Ishida, M., Serit, M., Nakata, K., Juneja, L.R., Kim, M., Takahashi, S. 1992. Several antifeedants from neem oil, Azadirachta indica A. Juss., against Reticulitermes speratus Kolbe (Isoptera: Rhinotermitidae). Bioscience, Biotechnology, and Biochemistry 56(11): 1835-1838. https://doi.org/10.1271/bbb.56.1835
  22. Isman, M.B. 2020. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochemistry Reviews 19(2): 235-241. https://doi.org/10.1007/s11101-019-09653-9
  23. Jimenez-Duran, A., Barrera-Cortes, J., Lina-Garcia, L.P., Santillan, R., Soto-Hernandez, R.M., Ramos-Valdivia, A.C., Ponce-Noyola, T., Rios-Leal, E. 2021. Biological activity of phytochemicals from agricultural wastes and weeds on Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Sustainability 13(24): 13896.
  24. Kaewnang-O, E., Ngampongsai, A., Subhadhirasakul, S., Srichana, T. 2011. Toxicity of fixed oil and crude extract from sa-dao-thiam, Azadirachta excelsa (Jack) seed kernel to Aedes aegypti (L.). Songklanakarin Journal of Science & Technology 33(1): 43-49.
  25. Koul, O., Singh, G., Singh, R., Singh, J., Daniewski, W.M., Berlozecki, S. 2004. Bioefficacy and mode-of-action of some limonoids of salannin group from Azadirachta indica A. Juss and their role in a multicomponent system against lepidopteran larvae. Journal of Biosciences 29(4): 409-416. https://doi.org/10.1007/BF02712112
  26. Kraus, W., Cramer, R. 1981. Pentanortriterpenoide aus Azadirachta indica A. Juss (Meliaceae). Chemische Berichte 114(7): 2375-2381. https://doi.org/10.1002/cber.19811140703
  27. Kurose, K., Yatagai, M. 2005. Components of the essential oils of Azadirachta indica A. Juss, Azadirachta siamensis Velton, and Azadirachta excelsa (Jack) Jacobs and their comparison. Journal of Wood Science 51(2): 185-188. https://doi.org/10.1007/s10086-004-0640-4
  28. Kuswanto, E., Ahmad, I., Dungani, R. 2015. Threat of subterranean termites attack in the Asian countries and their control: A review. Asian Journal of Applied Sciences 8(4): 227-239. https://doi.org/10.3923/ajaps.2015.227.239
  29. Lamy, F.C., Poinsot, D., Cortesero, A.M., Dugravot, S. 2017. Artificially applied plant volatile organic compounds modify the behavior of a pest with no adverse effect on its natural enemies in the field. Journal of Pest Science 90(2): 611-621. https://doi.org/10.1007/s10340-016-0792-1
  30. Lee, J.M., Kim, Y.H., Hong, J.Y., Lim, B., Park, J.H. 2020. Exploration of preservatives that inhibit wood feeding by inhibiting termite intestinal enzyme activity. Journal of the Korean Wood Science and Technology 48(3): 376-392. https://doi.org/10.5658/WOOD.2020.48.3.376
  31. Lin, M., Bi, X., Zhou, L., Huang, J. 2022. Insecticidal triterpenes in meliaceae: Plant species, molecules, and activities: Part II (Cipadessa, Melia). International Journal of Molecular Sciences 23(10): 5329.
  32. Lin, M., Yang, S., Huang, J., Zhou, L. 2021. Insecticidal triterpenes in meliaceae: Plant species, molecules and activities: Part I (Aphanamixis-Chukrasia). International Journal of Molecular Sciences 22(24): 13262.
  33. Luo, J., Sun, Y., Li, Q., Kong, L. 2022. Research progress of meliaceous limonoids from 2011 to 2021. Natural Product Reports 39(6): 1325-1365. https://doi.org/10.1039/D2NP00015F
  34. Mulani, F.A., Nandikol, S.S., Haldar, S., Thulasiram, H.V. 2021. Accurate identification of bioactive meliaceae limonoids by UHPLC-MS/MS based structure-fragment relationships (SFRs). ACS Omega 6(40): 26454-26476. https://doi.org/10.1021/acsomega.1c03697
  35. Nakagawa, H., Duan, H., Takaishi, Y. 2001. Limonoids from Citrus sudachi. Chemical and Pharmaceutical Bulletin 49(5): 649-651. https://doi.org/10.1248/cpb.49.649
  36. Nakatani, M., Zhou, J.B., Nakayama, N., Okamura, H., Iwagawa, T. 1996. Nimbolidins C-E, limonoid antifeedants from Melia toosendan. Phytochemistry 41(3): 739-743. https://doi.org/10.1016/0031-9422(95)00696-6
  37. Navinraj, S., Santhanakrishnan, V.P., Manikanda Boopathi, N., Balasubramani, V., Raghu, R. 2021. In vitro studies on the insecticidal activity of nimbolide against fall armyworm (Spodoptera frugiperda). The Pharma Innovation Journal SP-10(11): 105-109.
  38. Nurdiana, S., Nor Haziqah, A.S., Nur Ezwa Khairunnisa, M.K., Nurul 'Izzati, S., Siti Amna, Y., Norashirene, M.J., Nur Hilwani, I. 2014. Attenuation of pancreatic histology, hematology and biochemical parameters in type 2 diabetic rats treated with Azadirachta excelsa. International Journal of Agricultural and Biosystems Engineering 8(9): 613-616.
  39. Oramahi, H.A., Tindaon, M.J., Nurhaida, N., Diba, F., Yanti, H. 2022. Termicidal activity and chemical components of wood vinegar from nipah fruit against Coptotermes curvignathus. Journal of the Korean Wood Science and Technology 50(5): 315-324. https://doi.org/10.5658/WOOD.2022.50.5.315
  40. Rodriguez, B., Caballero, C., Ortego, F., Castanera, P. 2003. A new tetranortriterpenoid from Trichilia havanensis. Journal of Natural Products 66(3): 452-454. https://doi.org/10.1021/np0204646
  41. Roy, A., Saraf, S. 2006. Limonoids: Overview of significant bioactive triterpenes distributed in plants kingdom. Biological and Pharmaceutical Bulletin 29(2): 191-201. https://doi.org/10.1248/bpb.29.191
  42. Sajap, A.S., Aloysius, F. 2000. Effects of leaf extracts of Azadirachta excelsa on Coptotermes curvignathus (Isoptera: Rhinotermidae). Sociobiology 36(3): 497-503.
  43. Sanjaya, A., Adfa, M., Pardede, A., Gustian, I., Ninomiya, M., Kusnanda, A.J., Koketsu, M. 2019. Isolation and structure elucidation of steroid from methanol extract of Sentang (Azadirachta excelsa (Jack.) Jacobs) stem. In: Triawan, D.A. (ed), Bengkulu, Indonesia, Proceedings of the 1st International Conference on Chemistry, Pharmacy and Medical Sciences (ICCPM), pp. 1-4.
  44. Schmutterer, H. 2019. Insect Growth-disrupting and Fecundity-reducing Ingredients from the Neem and Chinaberry Trees. In: Handbook of Natural Pesticides, Ed. by Mandava, N.B. CRC Press, Boca Raton, FL, USA. pp. 119-170.
  45. Senthil-Nathan, S. 2015. A Review of Biopesticides and Their Mode of Action against Insect Pests. In: Environmental Sustainability, Ed. by Thangavel, P. and Sridevi, G. Springer, New Delhi, India.
  46. Serit, M., Ishida, M., Nakata, K., Kim, M., Takahashi, S. 1992. Antifeeding potency of neem (Azadirachta indica) extractives and limonoids against termite (Reticulitermes speratus). Journal of Pesticide Science 17(4): 267-273. https://doi.org/10.1584/jpestics.17.4_267
  47. Shafie, N.I., Samsulrizal, N., Sopian, N.A., Rajion, M.A., Meng, G.Y., Ajat, M.M.M., Ahmad, H. 2015. Qualitative phytochemical screening and GC-MS profiling of Azadirachta excelsa leaf extract. Malaysian Applied Biology 44(3): 87-92.
  48. Sinthusiri, J., Soonwera, M. 2014. Oviposition deterrent and ovicidal activities of seven herbal essential oils against female adults of housefly, Musca domesticaL. Parasitology Research 113(8): 3015-3022. https://doi.org/10.1007/s00436-014-3964-z
  49. Teik Ng, L., Mun Yuen, P., Hong Loke, W., Abdul Kadir, A. 2003. Effects of Azadirachta excelsaon feeding behaviour, body weight and mortality of Crocidolomia binotalis Zeller (Lepidoptera: Pyralidae). Journal of the Science of Food and Agriculture 83(13): 1327-1330. https://doi.org/10.1002/jsfa.1542
  50. Zhu, B.C.R., Henderson, G., Yu, Y., Laine, R.A. 2003. Toxicity and repellency of patchouli oil and patchouli alcohol against Formosan subterranean termites Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Journal of Agricultural and Food Chemistry 51(16): 4585-4588. https://doi.org/10.1021/jf0301495