DOI QR코드

DOI QR Code

Numerical investigation of the hysteretic response analysis and damage assessment of RC column

  • Abdelmounaim Mechaala (National Earthquake Engineering Research Center, CGS) ;
  • Benazouz Chikh (Laboratoire TPITE, Ecole Nationale Superieure des Travaux Publics (ENSTP)) ;
  • Hakim Bechtoula (National Earthquake Engineering Research Center, CGS) ;
  • Mohand Ould Ouali (Laboratory Elaboration and Characterization of Materials and Modelling (LEC2M), University Mouloud Mammeri Of Tizi Ouzou) ;
  • Aghiles Nekmouche (National Earthquake Engineering Research Center, CGS)
  • 투고 : 2021.12.08
  • 심사 : 2023.03.13
  • 발행 : 2023.04.25

초록

The Finite Element (FE) modeling of Reinforced Concrete (RC) under seismic loading has a sensitive impact in terms of getting good contribution compared to experimental results. Several idealized model types for simulating the nonlinear response have been developed based on the plasticity distribution alone the model. The Continuum Models are the most used category of modeling, to understand the seismic behavior of structural elements in terms of their components, cracking patterns, hysteretic response, and failure mechanisms. However, the material modeling, contact and nonlinear analysis strategy are highly complex due to the joint operation of concrete and steel. This paper presents a numerical simulation of a chosen RC column under monotonic and cyclic loading using the FE Abaqus, to assessthe hysteretic response and failure mechanisms in the RC columns, where the perfect bonding option is used for the contact between concrete and steel. While results of the numerical study under cyclic loading compared to experimental tests might be unsuccessful due to the lack of bond-slip modeling. The monotonic loading shows a good estimation of the envelope response and deformation components. In addition, this work further demonstrates the advantage and efficiency of the damage distributions since the obtained damage distributions fit the expected results.

키워드

참고문헌

  1. Abaqus (2019), "User's manuals", Dassault Systemes Simulia Corp. Providence, RI, U.S.A. https://www.3ds.com
  2. Abedini, M. and Zhang, C. (2021), "Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading", Struct. Eng. Mech., 77(4), 441-461. https://doi.org/10.12989/SEM.2021.77.4.441
  3. Acun, B. and Sucuoglu, H. (2010), "Performance of reinforced concrete columns designed for flexure under severe displacement cycles", ACI Struct. J., 107(3). https://doi.org/10.14359/51663702.
  4. Alfarah, B. (2017), "Advanced computationally efficient modeling of RC structures nonlinear cyclic behavior", Ph.D. Dissertation, Universitat Politecnica de Catalunya, Barcelona, Spain.
  5. Alfarah, B., Lopez-Almansa, F. and Oller, S. (2017), "New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures", Eng. Struct., 132, 70-86. http://doi.10.1016/j.engstruct.2016.11.022.
  6. Banon, H., Biggs, J.M. and Irvine, H.M. (1981), "Seismic damage in reinforced concrete frames", J. Struct. Division, 107(9), 1713-1729. https://doi.org/10.1061/JSDEAG.0005778.
  7. Bazant, Z.P. and Bhat, P.D. (1977), "Prediction of hysteresis of reinforced concrete members", J. Struct. Division, 103(1), 153-167. https://doi.org/10.1061/JSDEAG.0004524.
  8. Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Materiaux et Construction, 16(3), 155-177. https://doi.org/10.1007/BF02486267.
  9. Bechtoula, H., Kono, S. and Watanabe, F. (2005), "Experimental and analytical investigations of seismic performance of cantilever reinforced concrete columns under varying transverse and axial loads", J. Asian Arch.Build. Eng., 4(2), 467-474. https://doi.org/10.3130/jaabe.4.467
  10. Bechtoula, H., Kono, S., Watanabe, F., Mehani, Y., Kibboua, A. and Naili, M. (2015), "Performance of HSC columns under severe cyclic loading", Bull. Earthq. Eng., 13(2), 503-538. https://doi.org/10.1007/s10518-014-9617-x.
  11. Carreira, D.J. and Chu, K.H. (1985), "Stress-strain relationship for plain concrete in compression", J. Proceed., 82(6), 797-804.
  12. Chang, G.A. and Mander, J.B. (1994), Seismic Energy Based Fatigue Damage Analysis of Bridge Columns: Part I-Evaluation of Seismic Capacity, National Center for Earthquake Engineering Research, Buffalo, NY.
  13. Clough, R., Benuska, K. and Wilson, E. (1965), "Inelastic earthquake response of tall buildings", Proceedings of the 3rd World Conference on Earthquake Engineering, Wellington, New Zealand.
  14. Clough, R.W. (1966). Effect of stiffness degradation on earthquake ductility requirements. In Proceedings of Japan earthquake engineering symposium, 195-198, Tokyo, Japan.
  15. De Llera, J.C.L. and Chopra, A.K. (1995), "A simplified model for analysis and design of asymmetric-plan buildings", Earthq. Eng. Struct. Dyn., 24(4), 573-594. https://doi.org/10.1002/eqe.4290240408.
  16. Filippou, F.C. and Issa, A. (1988), "Nonlinear analysis of reinforced concrete frames under cyclic load reversals", Report No. UCB/EERC-88/12, Earthquake Engineering Center, University of California, Berkeley, U.S.A.
  17. Filippou, F.C., Popov, E.P. and Bertero, V.V. (1983), "Effects of bond deterioration on hysteretic behavior of reinforced concrete joints", Report No. UCB/EERC-83/19, Earthquake Engineering Center, University of California, Berkeley, U.S.A.
  18. Gilberson, M. (1967), "The response of non-linear multi-storey structures subjected to earthquake excitations", Earthquake Engineering Research Laboratory.
  19. Gulec, C.K. (2009), "Performance-based assessment and design of squat reinforced concrete shear walls", Ph.D. Dissertation, State University of New York at Buffalo, New York, U.S.A.
  20. Hadi, M.N. and Zhao, H. (2011), "Experimental study of high-strength concrete columns confined with different types of mesh under eccentric and concentric loads", J. Mater. Civil Eng., 23(6), 823-832. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000234.
  21. Hidayat, B.A., Hu, H.T., Hsiao, F.P., Han, A.L., Pita, P. and Haryanto, Y. (2020), "Seismic performance of non-ductile detailing RC frames: An experimental investigation", Earthq. Struct., 19(6), 485-498. https://doi.org/10.12989/eas.2020.19.6.485.
  22. Hognestad, E., Hanson, N.W. and McHenry, D. (1955,), "Concrete stress distribution in ultimate strength design", J. Proceed., 52(12), 455-480, U.S.A. https://doi.org/10.12989/sem.2021.77.4.441.
  23. Hu, H.T. and Schnobrich, W.C. (1989), "Constitutive modeling of concrete by using nonassociated plasticity", J. Mater. Civil Eng., 1(4), 199-216. https://doi.org/10.1061/(ASCE)0899-1561(1989)1:4(199).
  24. Ibarra, L.F., Medina, R.A. and Krawinkler, H. (2005), "Hysteretic models that incorporate strength and stiffness deterioration", Earthq. Eng. Struct.l Dyn., 34(12), 1489-1511. https://doi.org/10.1002/eqe.495.
  25. Jean, L. and Chaboche, J.L. (1990), Mechanics of solid materials, Cambridge University Press, Cambridge, U.K.
  26. Kaba, S. and Mahin, S.A. (1984), "Refined modeling of reinforced concrete columns forseismic analysis", Report No UCB/EERC-84/03, Earthquake EngineeringResearch Center, University of California, Berkeley, U.S.A.
  27. Kent, D.C. (1969), "Inelastic behaviour of reinforced concrete members with cyclic loading", Ph.D. Dissertation, University of Canterbury, Christchurch, New Zealand.
  28. Kent, D.C. and Park, R. (1971), "Flexural members with confined concrete", J. Struct. Division, 97(7), 1969-1990. https://doi.org/10.1061/JSDEAG.0002957.
  29. Kim, K.D. and Engelhardt, M.D. (2000), "Beam-column element for nonlinear seismic analysis of steel frames", J. Struct. Eng., 126(8), 916-925. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(916).
  30. La Borderie, C., Lawrence, C. and Menou, A. (2007), "Approche mesoscopique du comportement du beton: Apport de la representation geometrique ", Revue Eopeenne de Gnie Civil, 11(4), 407-421. https://doi.org/10.1080/17747120.2007.9692936.
  31. Lai, S.S., Will, G.T. and Otani, S. (1984), "Model for inelastic biaxial bending of concrete members", J. Struct. Eng., 110(11), 2563-2584. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:11(2563).
  32. Lam, S.S.E., Wu, B., Wong, Y.L., Wang, Z.Y., Liu, Z.Q. and Li, C.S. (2003), "Drift capacity of rectangular reinforced concrete columns with low lateral confinement and high-axial load", J. Struct. Eng., 129(6), 733-742. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:6(733).
  33. Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
  34. Lou, T.J. and Xiang, Y.Q. (2008), "Numerical method for biaxially loaded reinforced and prestressed concrete slender columns with arbitrary section" Struct. Eng. Mech., 28(5), 587-601. https://doi.org/10.12989/sem.2008.28.5.587.
  35. Lu, X. and Chen, S. (2008), "Nonlinear finite element analysis of high-strength concrete columns and experimental verification", Earthq. Eng. Eng. Vib., 7(1), 77-89. https://doi.org/10.1007/s11803-008-0771-5
  36. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solid. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  37. Lynn, A.C., Moehle, J.P., Mahin, S.A. and Holmes, W.T. (1996), "Seismic evaluation of existing reinforced concrete building columns", Earthq. Spectra, 12(4), 715-739. https://doi.org/10.1193/1.1585907.
  38. Menegotto, M. (1973), "Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending", In Proceedings of IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads.
  39. Meyer, C., Roufaiel, M.S. and Arzoumanidis, S.G. (1983), "Analysis of damaged concrete frames for cyclic loads", Earthq. Eng. Struct. Dyn., 11(2), 207-228. https://doi.org/10.1002/eqe.4290110205.
  40. Misra, A. and Poorsolhjouy, P. (2020), "Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics", Math. Mech. Solids, 25(10), 1778-1803. https://doi.org/10.1177/1081286515576821.
  41. Murcia-Delso, J. (2013), "Bond-slip behavior and development of bridge column longitudinal reinforcing bars in enlarged pile shafts", Ph.D. Dissertation, University of California, San Diego, U.S.A.
  42. Nayal, R. and Rasheed, H.A. (2006), "Tension stiffening model for concrete beams reinforced with steel and FRP bars", J. Mater. Civil Eng., 18(6), 831-841. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:6(831).
  43. Ouali, M.O., Poorsolhjouy, P., Placidi, L. and Misra, A. (2021), "Evaluation of the effects of stress concentrations on plates using granular micromechanics", Constr. Build. Mater., 290, 123227. https://doi.org/10.1016/j.conbuildmat.2021.123227.
  44. Ping, C.Z., Weiwei, S. and Yang, Y. (2021), "Seismic behavior of reinforced concrete T-shaped columns under compression-bending-shear and torsion", Earthq. Struct., 20(4), 431-444. https://doi.org/10.12989/eas.2021.20.4.431
  45. Reinhorn, A.M., Valles, R.E. and Kunnath, S.K. (2006), IDARC 2D Version 6.1-User's Guide, State University of New York, Buffalo, N.Y., U.S.A.
  46. Roufaiel, M.S. and Meyer, C. (1987), "Analytical modeling of hysteretic behavior of R/C frames", J. Struct. Eng., 113(3), 429-444. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:3(429).
  47. Saatcioglu, M. and Razvi, S.R. (1998), "High-strength concrete columns with square sections under concentric compression", J. Struct. Eng., 124(12), 1438-1447. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1438).
  48. SeismoSoft (2006), "SeismoStruct-A computer program for the static and dynamic analysis of framed structures", Pavia, Italy. http://www.seismosoft.com.
  49. Soleimani, D., Popov, E.P. and Bertero, V.V. (1979), "Nonlinear beam model for R/C frame analysis", Electr. Comput. ASCE, 483-509.
  50. Takeda, T., Sozen, M.A. and Nielsen, N.N. (1970), "Reinforced concrete response to simulated earthquakes", J. Struct. Division, 96(12), 2557-2573. https://doi.org/10.1061/JSDEAG.0002765.
  51. Wang, P., Shi, Q.X., Wang, F. and Wang, Q.W. (2017), "Experimental investigation of SRHSC columns under biaxial loading", Earthq. Struct., 13(5), 485-496. https://doi.org/10.12989/eas.2017.13.5.485.
  52. Zub, C.I., Stratan, A. and Dubina, D. (2020), "Calibration of parameters of combined hardening model using tensile tests", Politehnica University of Timisoara, Timisoara, Romania.