DOI QR코드

DOI QR Code

Expansion performance and mechanical properties of expansive grout under different curing pressures

  • Yiming Liu (School of Resources and Environmental Engineering, Wuhan University of Science and Technology) ;
  • Yicheng Ye (School of Resources and Environmental Engineering, Wuhan University of Science and Technology) ;
  • Nan Yao (School of Resources and Environmental Engineering, Wuhan University of Science and Technology) ;
  • Changzhao Chen (School of Resources and Environmental Engineering, Wuhan University of Science and Technology)
  • Received : 2021.05.11
  • Accepted : 2023.03.05
  • Published : 2023.05.25

Abstract

The expansion capacity and strength of expansive grout have a significant influence on the stress state of a supported rock mass and the strength of a grout-rock mass structure. The expansion and strength characteristics are vital in grouting preparation and application. To analyze the expansion performance and mechanical properties of expansive grout, uniaxial compressive strength (UCS) tests, expansion ratio tests, XRD, SEM, and microscopic scanning tests (MSTs) of expansive grout under different curing pressure conditions were conducted. The microevolution was analyzed by combining the failure characteristics, XRD patterns, SEM images, and surface morphologies of the specimens. The experimental results show that: (1) The final expansion ratio of the expansive grout was linear with increasing expansion agent content and nonlinear with increasing curing pressure. (2) The strength of the expansive grout was positively correlated with curing pressure and negatively correlated with expansion agent content. (3) The expansion of expansive grout was related mainly to the development of calcium hydroxide (Ca(OH)2) crystals. With an increase in expansion agent content, the final expansion ratio increased, but the expansion rate decreased. With an increase in the curing pressure, the grout expansion effect decreased significantly. (4) The proportion of the concave surfaces at the centre of the specimen cross-section reflected the specimen's porosity to a certain extent, which was linear with increasing expansion agent content and curing pressure.

Keywords

Acknowledgement

This study was supported by the National Natural Science Foundation of China (Grant No. 51804224) and the Key Research and Development Plan of Hubei Province (No. 2020BCA082), and the Graduate Innovation and Entrepreneurship Fund of Wuhan University of Science and Technology (No. JCX201858). We would like to thank Elsevier Language Editing Services for English language editing.

References

  1. Colombo, A., Geiker, M., Justnes, H., Lauten, R.A. and De Weerdt, K. (2018), "The effect of calcium lignosulfonate on ettringite formation in cement paste", Cement Concrete Res., 107(2018), 188-205. https://doi.org/10.1016/j.cemconres.2018.02.021.
  2. Das, R. and Singh, T.N. (2020), "Effect of rock bolt support mechanism on tunnel deformation in jointed rockmass: A numerical approach", Undergr. Space, 6(4), 409-420. https://doi.org/10.1016/j.undsp.2020.06.001.
  3. De Silva, V.R.S., Ranjith, P.G., Perer, M.S.A., Wu, B. Rathnaweera, T.D. (2017), "Investigation of the mechanical, microstructural and mineralogical morphology of soundless cracking demolition agents during the hydration process", Mater. Characterization 130, 9-24. https://doi.org/10.1016/j.matchar.2017.05.004.
  4. De Silva, V.R.S., Ranjith, P.G., Perer, M.S.A. and Wu, B. (2019), "The effect of saturation conditions on fracture performance of different soundless cracking demolition agents (SCDAs) in geological reservoir rock formations", J. Nat. Gas Sci. Eng., 62, 157-170. https://doi.org/10.1016/j.jngse.2018.11.013.
  5. Double, D.D., Hellawell, A. and Perry, S.J. (1978), "The hydration of Portland cement", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 261(1699), 486-488. https://doi.org/10.1038/261486a0.
  6. EI Tani, M. (2012), "Grouting rock fractures with cement grout", Rock Mech. Rock Eng., 45(4), 547-561. https://doi.org/10.1007/s00603-012-0235-0.
  7. Huang, K.J., Shi, X.J., Zollinger, D., Mirsayar, M., Wang, A. and Mo, L.W. (2019), "Use of MgO expansion agent to compensate concrete shrinkage in jointed reinforced concrete pavement under high-altitude environmental conditions", Constr. Build. Mater., 202, 528-536. https://doi.org/10.1016/j.conbuildmat.2019.01.041.
  8. Laefer Debra, F., Natanzi Atteyeh, S. and Iman Zolanvari, S.M. (2018), "Impact of thermal transfer on hydration heat of a Soundless Chemical Demolition Agent", Constr. Build. Mater., 187. 348-359. https://doi.org/10.1016/j.conbuildmat.2018.07.168.
  9. Lai, M.H., Binhowimal, S., Griffith, A.M., Hanzic, L. and Ho, J. (2020), "Shrinkage, cementitious paste volume, and wet packing density of concrete", Struct. Concrete, 10. https://doi.org/10.1002/suco.202000407
  10. Li, Z.P., Zhang, L.Z., Chu, Y.T. and Zhang, Q.S. (2020), "Research on influence of water-cement ratio on reinforcement effect for permeation grouting in sand layer", Adv. Mater. Sci. Eng., 1, 1-12. https://doi.org/10.1155/2020/5329627.
  11. Liu, C.W. and Lu, S.L. (2000), "Reinforcement effect of cement grouting on engineering rock mass", J. China Univ. Mining & Technology, 29(5), 454-458. https://doi.org/10.3321/j.issn:1000-1964.2000.05.003.
  12. Liu, S.W., He, Y. and Fu, M.X. (2020), "Experimental investigation of surrounding-rock anchoring synergistic component for bolt support in tunnels", Tunn. Undergr. Sp. Technol., 104(12), 103531. https://doi.org/10.1016/j.tust.2020.103531.
  13. Lu, J., Yin, J.Z., Zhang, D.M., Gao, H., Li, C.B. and Li, M.H. (2020), "True triaxial strength and failure characteristics of cubic coal and sandstone under different loading paths", Int. J. Rock Mech. Min. Sci., 135(11), 104439. https://doi.org/10.1016/j.ijrmms.2020.104439.
  14. Moayed, R.Z., Hosseinali, M., Shirkhorshidi, S.M. and Sheibani, J. (2019), "Experimental investigation and constitutive modeling of grout-sand interface", Int. J. Geomech., 19(5), 04019024.1-04019024.13. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001384.
  15. Natanzi Atteyeh, S., Laefer Debra, F. and Iman Zolanvari, S.M. (2020), "Selective demolition of masonry unit walls with a soundless chemical demolition agent", Constr. Build. Mater., 248, 118635. https://doi.org/10.1016/j.conbuildmat.2020.118635.
  16. Pedrotti, M., Wong, C., El Mountassir, G. and Lunn, R.J. (2017), "An analytical model for the control of silica grout penetration in natural groundwater systems", Tunn. Undergr. Sp. Technol., 7, 105-113. https://doi.org/10.1016/j.tust.2017.06.023.
  17. Saeidi, O., Stille, H. and Torabi, S.R. (2013), "Numerical and analytical analyses of the effects of different joint and grout properties on the rock mass groutability", Tunn. Undergr. Sp. Technol., 38, 11-25. https://doi.org/10.1016/j.tust.2013.05.005.
  18. Shang, J., West, L.J., Hencher, S.R. and Zhao, Z. (2018a), "Tensile strength of large-scale incipient rock joints: a laboratory investigation", Acta Geotechnica, 13(4), 869-886. https://doi.org/10.1007/s11440-017-0620-7.
  19. Shang, J., Zhao, Z. and Aliyu, M.M. (2018b), "Stresses induced by a demolition agent in nonexplosive rock fracturing", Int. J. Rock Mech. Min. Sci., 107, 172-180. https://doi.org/10.1016/j.ijrmms.2018.04.049.
  20. Shimada, H., Hamanaka, A., Sasaoka, T. and Matsui, K. (2014), "Behaviour of grouting material used for floor reinforcement in underground mines", Int. J. Min. Reclamation Environ., 28(2), 133-148. https://doi.org/10.13722/j.cnki.jrme.2016.0934.
  21. Varol, A. and Dalg, S. (2006), "Grouting applications in the Istanbul metro, Turkey", Tunn. Undergr. Sp. Technol., 21(6), 602-612. https://doi.org/10.1016/j.tust.2005.11.002.
  22. Wang, P.X., Zhang, X.D., Zhang, B., Jiang, L.Z. and Xie, M.W. (2014), "Effect of the expansion agent on early-age autogenous shrinkage stress of concrete", Adv. Mater. Res., 838-841, 564-568. https://doi.org/10.4028/www.scientific.net/AMR.838-841.564.
  23. Wang, Q., Qin, Q., Jiang, B., Yu, H.C., Pan, R. and Li, S.C. (2019), "Study and engineering application on the bolt-grouting reinforcement effect in underground engineering with fractured surrounding rock", Tunn. Undergr. Sp. Technol., 84, 237-247. https://doi.org/10.1016/j.tust.2018.11.028.
  24. Widmann, R. (1996), "International society for rock mechanics commission on rock grouting", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 33(8), 803-847. https://doi.org/10.1016/S0148-9062(96)00015-0.
  25. Yao, N., Chen, J.W., Hu, N.Y., Ye, Y.C., Xiao, Y.H. and Huang, Y. (2021), "Experimental study on expansion mechanism and characteristics of expansive grout", Constr. Build. Mater., 268, 121574. https://doi.org/10.1016/j.conbuildmat.2020.121574.
  26. Ylmen, R., Jaglid, U., Steenari, B.M. and Panas, I. (2009), "Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques", Constr. Build. Mater., 39(5), 433-439. https://doi.org/10.1016/j.cemconres.2009.01.017.
  27. Zhang, J.P., Liu, L.M., Li, Q.H., Peng, W., Zhang, F.T., Cao, J.Z. and Wang, H. (2019), "Development of cement-based self-stress composite grouting material for reinforcing rock mass and engineering application", Constr. Build. Mater., 201, 314-327. https://doi.org/10.1016/j.conbuildmat.2018.12.143.
  28. Zhang, S.C., Li, Y.Y., Liu, H. and Ma, X.W. (2021), "Experimental investigation of crack propagation behavior and failure characteristics of cement infilled rock", Constr. Build. Mater., 268, 121735. https://doi.org/10.1016/j.conbuildmat.2020.121735.
  29. Zhang, X., Wang, M.N. and Wang, Z.L. (2020), "Stability analysis model for a tunnel face reinforced with bolts and an umbrella arch in cohesive-frictional soils", Comput. Geotech., 124(2-3), 103635. https://doi.org/10.1016/j.compgeo.2020.103635.
  30. Zhi, W., Li, L., Guo, S.C., Dai, Q.L. and Qing, L. (2018), "Nonlinear fatigue damage of cracked cement paste after grouting enhancement", Appl. Sci., 8(7), 1105. https://doi.org/10.3390/app8071105.