DOI QR코드

DOI QR Code

가시광선 활용을 위한 Ag 도핑 흑색 ZnO 나노 광촉매 합성

Synthesis of Ag-doped black ZnO nano-catalysts for the utilization of visible-light

  • 김의준 (한국해양대학교 해양신소재융합공학과) ;
  • 김혜민 (신슈대학 물질화학과) ;
  • 이승효 (한국해양대학교 해양신소재융합공학과)
  • Ui-Jun Kim (Division of Ocean Advanced Materials Convergence Engineering, Korea Maritime & Ocean University) ;
  • Hye-Min Kim (Department of Materials Chemistry, Shinshu University) ;
  • Seung-Hyo Lee (Division of Ocean Advanced Materials Convergence Engineering, Korea Maritime & Ocean University)
  • 투고 : 2023.06.17
  • 심사 : 2023.06.26
  • 발행 : 2023.06.30

초록

Photocatalysts are advanced materials which accelerate the photoreaction by providing ordinary reactions with other pathways. The catalysts have various advantages, such as low-cost, low operating temperature and pressure, and long-term use. They are applied to environmental and energy field, including the air and water purification, water splitting for hydrogen production, sterilization and self-cleaning surfaces. However, commercial photocatalysts only absorb ultraviolet light between 100 and 400 nm of wavelength which comprises only 5% in sunlight due to the wide band gap. In addition, rapid recombination of electron-hole pairs reduces the photocatalytic performance. Recently, studies on blackening photocatalysts by laser, thermal, and plasma treatments have been conducted to enhance the absorption of visible light and photocatalytic activity. The disordered structures could yield mid-gap states and vacancies could cause charge carrier trapping. Herein, liquid phase plasma (LPP) is adopted to synthesize Ag-doped black ZnO for the utilization of visible-light. The physical and chemical characteristics of the synthesized photocatalysts are analyzed by SEM/EDS, XRD, XPS and the optical properties of them are investigated using UV/Vis DRS and PL analyses. Lastly, the photocatalytic activity was evaluated using methylene blue as a pollutant.

키워드

참고문헌

  1. A. R. Clemente, R. A. T. Palma, G. A. Penuela, Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review, Sci. Total Environ., 478 (2014) 201-225.
  2. I. Galambos, J. M. Molina, P. G. Jaray, Vatai, E. Bekassy-Molnar, High organic content industrial wastewater treatment by membrane filtration, Desalination, 162 (2004) 117-120. https://doi.org/10.1016/S0011-9164(04)00034-7
  3. M. M. Huber, S. Korhonen, T. A. Ternes, U. Von Gunten, Oxidation of pharmaceuticals during water treatment with chlorine dioxide, Water Res., 39 (15) (2005) 3607- 3617. https://doi.org/10.1016/j.watres.2005.05.040
  4. P. Pandey, A. Kapley, S. K. Brar, Biodegradation of High Molecular Weight Polyaromatic Hydrocarbons in Different Environments, Front. Microbiol., 12 (2021) 704897.
  5. K. M. Lee, C. W. Lai, K. S. Ngai, J. C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review, Water Res, 88 (2016) 428-448. https://doi.org/10.1016/j.watres.2015.09.045
  6. J. L. Lopez, A. T. Ochoa, A. L. Beltran, J. H. Ramirez, P. M. Herrera, Sunlight photocatalytic performance of ZnO nanoparticles synthesized by green chemistry using different botanical extracts and zinc acetate as a precursor, Molecules, 27 (2021) 6.
  7. T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting, ACS Catal., 8 (2018) 2253-2276. https://doi.org/10.1021/acscatal.7b03437
  8. S. Sun, X. Chang, X. Li, Z. Li, Synthesis of N-doped ZnO nanoparticles with improved photocatalytical activity, Ceram. Int., 39 (2013) 5197-5203. https://doi.org/10.1016/j.ceramint.2012.12.018
  9. B. Divband, M. Khatamian, G. K. Eslamian, M. Darbandi, Synthesis of Ag/ZnO nanostructures by different methods and investigation of their photocatalytic efficiency for 4-nitrophenol degradation, Appl. Surf. Sci., 284 (2013) 80-86. https://doi.org/10.1016/j.apsusc.2013.07.015
  10. A. Senthilraja, B. Subash, B. Krishnakumar, D. Rajamanickam, M. Swaminathan, M. Shanthi, Synthesis, characterization and catalytic activity of co-doped Ag-Au-ZnO for MB dye degradation under UV-A light, Mater. Sci. Semicond. Process., 22 (2014) 83-91. https://doi.org/10.1016/j.mssp.2014.02.011
  11. M. Zimbone, G. Cacciato, R. Sanz, R. Carles, A. Gulino, V. Privitera, M. G. Grimaldi, Black TiOx photocatalyst obtained by laser irradiation in water, Catal. Commun., 84 (2016) 11-15. https://doi.org/10.1016/j.catcom.2016.05.024
  12. N. Zhang, C. X. Shan, H. Q. Tan, Q. Zhao, S. P. Wang, Z. C. Sun, D. Z. Shen, Black-colored ZnO nanowires with enhanced photocatalytic hydrogen evolution, Nanotechnology, 27 (2016) 22LT01.
  13. H. Zhang, M. Zhang, C. Lin, J. Zhang, AuNPs hybrid black ZnO nanorods made by a sol-gel method for highly sensitive humidity sensing, Sensors, 18 (2018) 218.
  14. T. Jedsukontorn, T. Ueno, N. Saito, M. Hunsom, Narrowing band gap energy of defective black TiO2 fabricated by solution plasma process and its photocatalytic activity on glycerol transformation, J. Alloys Compd., 757 (2018) 188-199.
  15. P. Raizada, V. Soni, A. Kumar, P. Singh, A. A. P. Khan, A. M. Asiri, V. H. Nguyen, Surface defect engineering of metal oxides photocatalyst for energy application and water treatment, J. Mater., 7 (2021) 388- 418.
  16. M. A. Gondal, A. M. Ilyas, U. Baig, Pulsed laser ablation in liquid synthesis of ZnO/TiO2 nanocomposite catalyst with enhanced photovoltaic and photocatalytic performance, Ceram. Int., 42 (2016) 13151-13160. https://doi.org/10.1016/j.ceramint.2016.05.104
  17. B. Choudhury, S. Bayan, A. Choudhury, P. Chakraborty, Narrowing of band gap and effective charge carrier separation in oxygen deficient TiO2 nanotubes with improved visible light photocatalytic activity, J. Colloid Interface Sci., 465 (2016) 1-10.
  18. G. Liu, H. G. Yang, X. Wang, L. Cheng, H. Lu, L. Wang, H. M. Cheng, Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant {001} facets, J. Phys. Chem. C, 113 (2009) 21784-21788. https://doi.org/10.1021/jp907749r
  19. V. A. Z. Ibarra, S. Shaji, B. Krishnan, J. Johny, S. S. Kanakkillam, D. A. Avellaneda, N. A. R. Delgado, Synthesis and characterization of black TiO2 nanoparticles by pulsed laser irradiation in liquid, Appl. Surf. Sci., 483 (2019) 156-164. https://doi.org/10.1016/j.apsusc.2019.03.302
  20. U. J. Kim, N. Saito, S. H. Lee, Remediation of water contaminated with polycyclic aromatic hydrocarbons using liquid phase plasma: Influence of electrical discharge condition, Front. Mar. Sci., 9 (2022) 1033962.
  21. S. Back, N. Saito, S. Lee, A facile and efficient approach for the removal of high concentrations of ammonia nitrogen in wastewater: Liquid-phase plasma treatment, J. Environ. Chem. Eng., 11 (2023) 109075.
  22. S. S. Kanakkillam, S. Shaji, B. Krishnan, S. V. Rodriguez, J. A. Martinez, M. M. Palma, D. A. Avellaneda, Nanoflakes of zinc oxide: cobalt oxide composites by pulsed laser fragmentation for visible light photocatalysis, Appl. Surf. Sci., 501 (2020) 144223.
  23. J. Chastain, R. C. King Jr, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, 40 (1992) 221.
  24. S. Kalathil, M. M. Khan, S. A. Ansari, J. Lee, M. H. Cho, Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity, Nanoscale, 5 (2013) 6323-6326. https://doi.org/10.1039/c3nr01280h
  25. F. Yu, Z. Liu, Y. Li, D. Nan, B. Wang, L. He, Y. Liu, Effect of oxygen vacancy defect regeneration on photocatalytic properties of ZnO nanorods, Appl. Phys. A, 126 (2020) 1-12. https://doi.org/10.1007/s00339-019-3176-6
  26. J. C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides, Phys. Chem. Chem. Phys., 2 (2000) 1319-1324. https://doi.org/10.1039/a908800h
  27. M. Kim, B. Lee, H. Ju, J. Y. Kim, J. Kim, S. W. Lee, Oxygen-vacancy-introduced BaSnO3- δ photoanodes with tunable band structures for efficient solar-driven water splitting, Adv. Mater., 31 (2019) 1903316.
  28. J. C. Fan, J. B. Goodenough, X-ray photoemission spectroscopy studies of Sndoped indium-oxide films, J. Appl. Phys., 48 (1977) 3524-3531. https://doi.org/10.1063/1.324149
  29. Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng, K. Wei, Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis, Inorg. Chem., 46 (2007) 6980-6986. https://doi.org/10.1021/ic700688f
  30. N. L. Gavade, A. N. Kadam, Y. B. Gaikwad, M. J. Dhanavade, K. M. Garadkar, Decoration of biogenic AgNPs on template free ZnO nanorods for sunlight driven photocatalytic detoxification of dyes and inhibition of bacteria, J. Mater. Sci. Mater. Electron., 27 (2016) 11080-11091. https://doi.org/10.1007/s10854-016-5225-7
  31. N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, G. Cantwell, Role of copper in the green luminescence from ZnO crystals, Appl. Phys. Lett., 81 (2002) 622-624. https://doi.org/10.1063/1.1494125
  32. L. S. Mende, J. L. M. Driscoll, ZnO- nanostructures, defects, and devices, Mater. Today, 10 (2007) 40-48.
  33. Y. Zhang, J. Mu, One-pot synthesis, photoluminescence, and photocatalysis of Ag/ZnO composites, J. Colloid Interface Sci., 309 (2007) 478-484. https://doi.org/10.1016/j.jcis.2007.01.011
  34. K. Kim, S. Chae, P. G. Choi, T. Itoh, N. Saito, Y. Masuda, Facile synthesis of ZnO nanobullets by solution plasma without chemical additives, RSC Adv., 11 (2021) 26785-26790. https://doi.org/10.1039/D1RA05008G
  35. C. Chokradjaroen, J. Niu, G. Panomsuwan, N. Saito, Insight on solution plasma in aqueous solution and their application in modification of chitin and chitosan, Int. J. Mol. Sci., 22 (2021) 4308.
  36. U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep., 48 (2003) 53-229. https://doi.org/10.1016/S0167-5729(02)00100-0
  37. J. M. Pan, B. L. Maschhoff, U. Diebold, T. E. Madey, Interaction of water, oxygen, and hydrogen with TiO2 (110) surfaces having different defect densities, J. Vac. Sci. Technol. A, 10 (1992) 2470-2476. https://doi.org/10.1116/1.577986
  38. C. A. Jenkins, D. M. Murphy, Thermal and photoreactivity of TiO2 at the gas- solid interface with aliphatic and aromatic aldehydes, J. Phys. Chem. B, 103 (1999) 1019-1026. https://doi.org/10.1021/jp982690n
  39. J. Jun, M. Dhayal, J. H. Shin, J. C. Kim, N. Getoff, Surface properties and photoactivity of TiO2 treated with electron beam, Radiat. Phys. Chem., 75 (2006) 583-589. https://doi.org/10.1016/j.radphyschem.2005.10.015
  40. N. N. Yunus, F. Hamzah, M. S. S. Aib, J. Krishnan, Effect of catalyst loading on photocatalytic degradation of phenol by using N, S Co-doped TiO2, IOP Conf. Ser.: Mater. Sci. Eng., 206 (2017) 012092.
  41. S. Ahmed, M. G. Rasul, R. Brown, M. A. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review, J. Environ. Manage., 92 (2011) 311-330. https://doi.org/10.1016/j.jenvman.2010.08.028
  42. A. Degen, M. Kosec, Influence of pH and ionic impurities on the adsorption of poly (acrylic) dispersant onto a zinc oxide surface, J. Am. Ceram. Soc., 86 (2003) 2001-2010. https://doi.org/10.1111/j.1151-2916.2003.tb03600.x
  43. T. H. Muster, I. S. Cole, The protective nature of passivation films on zinc: surface charge, Corros. Sci., 46 (2004) 2319-2335. https://doi.org/10.1016/j.corsci.2004.01.002
  44. S. Liufu, H. Xiao, Y. Li, Investigation of PEG adsorption on the surface of zinc oxide nanoparticles, Powder Technol., 145 (2004) 20-24.  https://doi.org/10.1016/j.powtec.2004.05.007