DOI QR코드

DOI QR Code

Analytical crack growth in unidirectional composite flywheel

  • Lluis Ripoll (Mechanical Engineering & Industrial Construction, Universitat de Girona) ;
  • Jose L. Perez-Aparicio (Continuum Mechanics & Theory of Structures, Universitat Politecnica de Valencia) ;
  • Pere Maimi (Mechanical Engineering & Industrial Construction, Universitat de Girona) ;
  • Emilio V. Gonzalez (Mechanical Engineering & Industrial Construction, Universitat de Girona)
  • Received : 2023.03.09
  • Accepted : 2023.03.30
  • Published : 2023.04.25

Abstract

Scarce research has been published on crack propagation fracture of flywheels manufactured with carbon fiber-reinforced polymers. The present work deals with a calculation method to determine the conditions for which a crack propagates in the axial direction of the flywheel. The assumptions are: flywheels made with just a single thick ply or ply clustering laminates, oriented following the hoop direction; a single crack is analyzed in the plane defined by the hoop and axial directions; the crack starts close to one of the free edges; its axial length is initially large enough so that its tip is far away from that free edge, and the crack expands the entire circumferential perimeter and keeps its concentric position. The developed method provides information for a good design of flywheels. It is concluded that a fracture-based crack propagation criterion generally occurs at a lower speed than a stress-based criterion. Also, that the evolution of failure with thickness using the fracture criterion is exponential, demonstrating that thin flywheels are relatively not sensitive to crack propagation, whereas thick ones are very prone.

Keywords

References

  1. Arnold, S.M., Saleeb, A.F. and Al-Zoubi, N.R. (2002), "Deformation and life analysis of composites flywheel disk systems", Compos.: Part B, 33, 433-459. https://doi.org/10.1016/S1359-8368(02)00032-X.
  2. Cepero, F., Garcia, I., Justo, J., Mantic, V. and Paris, F. (2019), "An experimental study of the translaminar fracture toughnesses in composites for different crack growth directions, parallel and transverse to the fiber direction", Compos. Sci. Technol., 181, 107679. https://doi.org/10.1016/j.compscitech.2019.107679.
  3. Christensen, R.M. (1997), "Stress based yield/failure criteria for fiber composites", Int. J. Solid. Struct., 34(5), 529-543. https://doi.org/10.1016/S0020-7683(96)00038-8.
  4. El-Hajjar, R. and Haj-Ali, R. (2005), "Mode-I fracture toughness testing of thick section FRP composites using the ESE (𝑇) specimen", Eng. Fract. Mech., 72(4), 631-643. https://doi.org/10.1016/j.engfracmech.2004.03.013.
  5. Gonzalez, E.V., Maimi, P., Martin-Santos, E., Soto, A., Cruz, P., Martin-Escalera, F. and Sainz-Aja, J.R. (2018), "Simulating drop-weight impact and compression after impact tests on composite laminates using conventional shell finite elements", Int. J. Solid. Struct., 144-145, 230-247. https://doi.org/10.1016/j.ijsolstr.2018.05.005.
  6. Ha, S.K., Yang, H.I. and Kim, D.J. (2001), "Optimum design multi-ring composite flywheel rotor using modified generalized plane strain assumption", Int. J. Mech. Sci., 43, 993-1007. https://doi.org/10.1016/S0020-7403(00)00047-3.
  7. Haj-Ali, R., El-Hajjar, R. and Muliana, A. (2006), "Cohesive fracture modeling of crack growth in thick-section composites", Eng. Fract. Mech., 73(15), 2192-2209. https://doi.org/10.1016/j.engfracmech.2006.04.003.
  8. Ibrahimbegovic, A. and Mejia-Nava, R.A. (2021), "Heterogeneities and material scales providing physically-based damping to replace Rayleigh damping for any structure size", Couple. Syst. Mech., 10(3), 201-216. https://doi.org/10.12989/csm.2021.10.3.201.
  9. Ibrahimbegovic, A., Matthies, H.G., Dobrilla, S., Karavelic, E., Nava, R.A.M., Nguyen, C.U., ... & Vondrejc, J. (2022), "Synergy of stochastics and inelasticity at multiple scales: Novel Bayesian applications in stochastic upscaling and fracture size and scale effects", SN Appl. Sci., 4(7), 191. https://doi.org/10.1007/s42452-022-04935-y.
  10. Koch, I., Just, G., Otrembab, F., Berner, M. and Gude, M. (2018), "Analysis of the micro-cracking behavior of carbon fibre reinforced flywheel T rotors considering residual stresses", Compos. Struct., 204, 587593. https://doi.org/10.1016/j.compstruct.2018.07.130.
  11. Lenz, J., Blackman, B.R.K., Taylor, A.C., Morgan, R. and Crua, C. (2014), "Selection of test methods to examine the fracture mechanics of carbon fibre composite flywheels", 16th European Conf. on Composite Materials, January.
  12. Nguyen, C.U., Hoang, T.V., Hadzalic, E., Dobrilla, S., Matthies, H.G. and Ibrahimbegovic, A. (2022), "Viscoplasticity model stochastic parameter identification: Multi-scale approach and Bayesian inference", Couple. Syst. Mech., 11(5), 411-442. https://doi.org/10.12989/csm.2022.11.5.411.
  13. Perez-Aparicio, J.L. and Ripoll, L.l. (2003), "Solucion generalizada para piezas cilindricas de material compuesto", Proceedings V Congreso AEMAC, Zaragoza, July.
  14. Perez-Aparicio, J.L. and Ripoll, L.l. (2011), "Exact, integrated and complete solutions for composite flywheels", Compos. Struct., 93, 1404-1415. https://doi.org/10.1016/j.compstruct.2010.11.011.
  15. Rizov, V. (2020), "Investigation of two parallel lengthwise cracks in an inhomogeneous beam of varying thickness", Couple. Syst. Mech., 9(4), 381-396. https://doi.org/10.12989/csm.2020.9.4.381.
  16. Suljevic, S., Ibrahimbegovic, A., Karavelic, E. and Dolarevic, E. (2022), "Meso-scale based parameter identification for 3D concrete plasticity model", Couple. Syst. Mech., 11(1), 55-78. https://doi.org/10.12989/csm.2022.11.1.055.
  17. Taylor, R.L. and Govindjee, S. (2020), "FEAP a finite element analysis program", Programmer Manual, University of California, Berkeley,
  18. Tzeng, J.T. (1998), "Dynamic response and fracture of composite cylinders", Compos. Sci. Technol., 58, 1443-1451. https://doi.org/10.1016/S0266-3538(98)00021-9.
  19. Tzeng, J.T. and Moy, P. (2008), "Composite energy storage flywheel design for fatigue crack resistance", 14th Symposium on Electromagnetic Launch Technology, June.
  20. Tzeng, J.T. and Pipes, R.B. (1992), "Thermal and residual stress analysis for in-situ and post consolidated composites ring", Compos. Manuf., 3, 273-279. https://doi.org/10.1016/0956-7143(92)90114-A.
  21. Tzeng, J.T., Emerson, R. and Moy, P. (2006), "Composite flywheels for energy storage", Compos. Sci. Technol., 66, 2520-2527. https://doi.org/10.1016/j.compscitech.2006.01.025.
  22. Wang, Y., Xingjiai, D., Kunpeng, W. and Xingfeng, G. (2018), "Progressive failure behavior of composite flywheels stacked from annular plain profiling woven fabric for energy storage", Compos. Struct., 194, 377-387. https://doi.org/10.1016/j.compstruct.2018.04.036.
  23. Wang, Y., Yu, B., Ji, K., Chen, J. and Zhaoyang, W. (2020), "Research on crack expansion characteristics of semi-disc polymethyl methacrylate specimen with weak prefabricated double-layer surfaces under dynamic load", Eng. Fract. Mech., 235, 107170. https://doi.org/10.1016/j.engfracmech.2020.107170.