References
- Arnold, S.M., Saleeb, A.F. and Al-Zoubi, N.R. (2002), "Deformation and life analysis of composites flywheel disk systems", Compos.: Part B, 33, 433-459. https://doi.org/10.1016/S1359-8368(02)00032-X.
- Cepero, F., Garcia, I., Justo, J., Mantic, V. and Paris, F. (2019), "An experimental study of the translaminar fracture toughnesses in composites for different crack growth directions, parallel and transverse to the fiber direction", Compos. Sci. Technol., 181, 107679. https://doi.org/10.1016/j.compscitech.2019.107679.
- Christensen, R.M. (1997), "Stress based yield/failure criteria for fiber composites", Int. J. Solid. Struct., 34(5), 529-543. https://doi.org/10.1016/S0020-7683(96)00038-8.
- El-Hajjar, R. and Haj-Ali, R. (2005), "Mode-I fracture toughness testing of thick section FRP composites using the ESE (𝑇) specimen", Eng. Fract. Mech., 72(4), 631-643. https://doi.org/10.1016/j.engfracmech.2004.03.013.
- Gonzalez, E.V., Maimi, P., Martin-Santos, E., Soto, A., Cruz, P., Martin-Escalera, F. and Sainz-Aja, J.R. (2018), "Simulating drop-weight impact and compression after impact tests on composite laminates using conventional shell finite elements", Int. J. Solid. Struct., 144-145, 230-247. https://doi.org/10.1016/j.ijsolstr.2018.05.005.
- Ha, S.K., Yang, H.I. and Kim, D.J. (2001), "Optimum design multi-ring composite flywheel rotor using modified generalized plane strain assumption", Int. J. Mech. Sci., 43, 993-1007. https://doi.org/10.1016/S0020-7403(00)00047-3.
- Haj-Ali, R., El-Hajjar, R. and Muliana, A. (2006), "Cohesive fracture modeling of crack growth in thick-section composites", Eng. Fract. Mech., 73(15), 2192-2209. https://doi.org/10.1016/j.engfracmech.2006.04.003.
- Ibrahimbegovic, A. and Mejia-Nava, R.A. (2021), "Heterogeneities and material scales providing physically-based damping to replace Rayleigh damping for any structure size", Couple. Syst. Mech., 10(3), 201-216. https://doi.org/10.12989/csm.2021.10.3.201.
- Ibrahimbegovic, A., Matthies, H.G., Dobrilla, S., Karavelic, E., Nava, R.A.M., Nguyen, C.U., ... & Vondrejc, J. (2022), "Synergy of stochastics and inelasticity at multiple scales: Novel Bayesian applications in stochastic upscaling and fracture size and scale effects", SN Appl. Sci., 4(7), 191. https://doi.org/10.1007/s42452-022-04935-y.
- Koch, I., Just, G., Otrembab, F., Berner, M. and Gude, M. (2018), "Analysis of the micro-cracking behavior of carbon fibre reinforced flywheel T rotors considering residual stresses", Compos. Struct., 204, 587593. https://doi.org/10.1016/j.compstruct.2018.07.130.
- Lenz, J., Blackman, B.R.K., Taylor, A.C., Morgan, R. and Crua, C. (2014), "Selection of test methods to examine the fracture mechanics of carbon fibre composite flywheels", 16th European Conf. on Composite Materials, January.
- Nguyen, C.U., Hoang, T.V., Hadzalic, E., Dobrilla, S., Matthies, H.G. and Ibrahimbegovic, A. (2022), "Viscoplasticity model stochastic parameter identification: Multi-scale approach and Bayesian inference", Couple. Syst. Mech., 11(5), 411-442. https://doi.org/10.12989/csm.2022.11.5.411.
- Perez-Aparicio, J.L. and Ripoll, L.l. (2003), "Solucion generalizada para piezas cilindricas de material compuesto", Proceedings V Congreso AEMAC, Zaragoza, July.
- Perez-Aparicio, J.L. and Ripoll, L.l. (2011), "Exact, integrated and complete solutions for composite flywheels", Compos. Struct., 93, 1404-1415. https://doi.org/10.1016/j.compstruct.2010.11.011.
- Rizov, V. (2020), "Investigation of two parallel lengthwise cracks in an inhomogeneous beam of varying thickness", Couple. Syst. Mech., 9(4), 381-396. https://doi.org/10.12989/csm.2020.9.4.381.
- Suljevic, S., Ibrahimbegovic, A., Karavelic, E. and Dolarevic, E. (2022), "Meso-scale based parameter identification for 3D concrete plasticity model", Couple. Syst. Mech., 11(1), 55-78. https://doi.org/10.12989/csm.2022.11.1.055.
- Taylor, R.L. and Govindjee, S. (2020), "FEAP a finite element analysis program", Programmer Manual, University of California, Berkeley,
- Tzeng, J.T. (1998), "Dynamic response and fracture of composite cylinders", Compos. Sci. Technol., 58, 1443-1451. https://doi.org/10.1016/S0266-3538(98)00021-9.
- Tzeng, J.T. and Moy, P. (2008), "Composite energy storage flywheel design for fatigue crack resistance", 14th Symposium on Electromagnetic Launch Technology, June.
- Tzeng, J.T. and Pipes, R.B. (1992), "Thermal and residual stress analysis for in-situ and post consolidated composites ring", Compos. Manuf., 3, 273-279. https://doi.org/10.1016/0956-7143(92)90114-A.
- Tzeng, J.T., Emerson, R. and Moy, P. (2006), "Composite flywheels for energy storage", Compos. Sci. Technol., 66, 2520-2527. https://doi.org/10.1016/j.compscitech.2006.01.025.
- Wang, Y., Xingjiai, D., Kunpeng, W. and Xingfeng, G. (2018), "Progressive failure behavior of composite flywheels stacked from annular plain profiling woven fabric for energy storage", Compos. Struct., 194, 377-387. https://doi.org/10.1016/j.compstruct.2018.04.036.
- Wang, Y., Yu, B., Ji, K., Chen, J. and Zhaoyang, W. (2020), "Research on crack expansion characteristics of semi-disc polymethyl methacrylate specimen with weak prefabricated double-layer surfaces under dynamic load", Eng. Fract. Mech., 235, 107170. https://doi.org/10.1016/j.engfracmech.2020.107170.