DOI QR코드

DOI QR Code

Influences of hygrothermal environment and fiber orientation on shear correction factor in orthotropic composite beams

  • Soumia Benguediab (Department of Civil Engineering and Hydraulic, University of Saida) ;
  • Fatima Zohra Kettaf (Department of Mechanical Engineering, University of Sciences and Technology Mohamed Boudiaf Oran) ;
  • Mohammed Sehoul (Institute of Sciences and Technology, University Center Nour Bachir of El Bayadh) ;
  • Fouad Bourada (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Abdelouahed Tounsi (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Mohamed Benguediab (Laboratory of Materials and Reactive Systems, Department of Mechanical Engineering, University Djillali Liabes of Sidi Bel Abbes)
  • Received : 2021.05.26
  • Accepted : 2023.04.10
  • Published : 2023.04.25

Abstract

In this study, a simple method for the determination of the shear correction factor for composites beam with a rectangular cross section is presented. The plane stress elasticity assumption is used after simplifications of the expression of the stress distribution in the beam. The different fiber orientation angle and volume fraction are considered in this work. The studied structure is subjected to various loading type (thermal and hygrothermal). The numerical results obtained show that there is a dependence of the shear coefficient on the orientation of the fibers. The evolution of the shear correction factors depends not only on the orientation of the fibers and also on the volume fraction and the environment. the advantage of this developed formula of the shear correction factor is to obtain more precise results and to consider several parameters influencing this factor which are neglected if the latter is constant.

Keywords

References

  1. Abarcar, R.B. and Cunnif, P.F. (1972), "The vibration of cantilever beams of fiber reinforced material", J. Compos. Mater., 6(4), 504-517. https://doi.org/10.1177/002199837200600406.
  2. Abderezak, R., Hassaine Daouadji, T. and Rabia, B. (2021), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Couple. Syst. Mech., 6(2), 117-133. http://doi.org/10.12989/acd.2021.6.2.117.
  3. Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. http://doi.org/10.12989/sem.2015.54.1.069.
  4. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  5. Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/scs.2022.42.5.649.
  6. Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/sem.2022.81.6.705.
  7. Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. http://doi.org/10.12989/cac.2019.24.1.037.
  8. Attia, MA. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
  9. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. http://doi.org/10.12989/scs.2019.30.6.603.
  10. Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37-47. https://doi.org/10.12989/anr.2022.12.1.037.
  11. Bert, C.W. (1973), "Simplified analysis of static shear factors for beam of nonhomogeneous cross-section", J. Compos. Mater., 7(4), 525-529. https://doi.org/10.1177/002199837300700410.
  12. Bochkareva, S.A. and Lekomtsev, S.V. (2022), "Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells", Struct. Eng. Mech., 81(6), 769-780. https://doi.org/10.12989/sem.2022.81.6.769.
  13. Chan, K.T., Lai, K.F., Stephen, N.G. and Young, K. (2011), "A new method to determine the shear coefficient of Timoshenko beam theory", J. Sound Vib., 330, 3488-3497. https://doi.org/10.1016/j.jsv.2011.02.012.
  14. Chen, W.R. (2012), "Parametric studies on bending of twisted timoshenko beams under complex loadings", J. Mech., 28, N1-N6. https://doi.org/10.1017/jmech.2012.23.
  15. Chinnapandi, L.B.M., Pitchaimani, J. and Eltaher, M.A. (2022), "Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads", Steel Compos. Struct., 44(6), 829-843. https://doi.org/10.12989/scs.2022.44.6.829.
  16. Cho, J.R. (2022a), "Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method", Struct. Eng. Mech., 84(6), 723-731. https://doi.org/10.12989/sem.2022.84.6.723.
  17. Cho, J.R. (2022b), "Nonlinear bending analysis of functionally graded CNT-reinforced composite plates", Steel Compos. Struct., 42(1), 23-32. https://doi.org/10.12989/scs.2022.42.1.023.
  18. Choi, S.H., Heo, I., Kim, J.H., Jeong, H., Lee, J.Y. and Kim, K.S. (2022), "Flexural behavior of post-tensioned precast concrete girder at negative moment region", Comput. Concrete, 30(1), 75-84. https://doi.org/10.12989/cac.2022.30.1.075.
  19. Chow, T.S. (1971), "On the propagation of flexural waves in an orthotropic laminated plate and its response to an impulsive load", J. Compos. Mater., 5(3), 306-319. https://doi.org/10.1177/002199837100500302.
  20. Cowper, G.R. (1966), "The shear coefficient in Timoshenko's beam theory", J. Appl. Mech., 33(2), 335-340. https://doi.org/10.1115/1.3625046.
  21. Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P. and Abdel Wahab, M. (2022a), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B: Condens. Matter., 631, 413726. https://doi.org/10.1016/j.physb.2022.413726.
  22. Cuong-Le, T., Nguyen, K.D., Lee, J. Rabczuk, T. and Nguyen-Xuan, H. (2022b), "A 3D nano scale IGA for free vibration and buckling analyses of multi-directional FGM nanoshells", Nanotechnol., 33(6), 065703. https://doi.org/10.1088/1361-6528/ac32f9.
  23. Dharmarajan, S. and McCutchen, Jr. H. (1973), "Shear coefficients for orthotropic beams", J. Compos. Mater., 7, 530-535. https://doi.org/10.1177/002199837300700411.
  24. Ding, F., Ding, H., He, C., Wang, L. and Lyu, F. (2022), "Method for flexural stiffness of steel-concrete composite beams based on stiffness combination coefficients", Comput. Concrete, 29(3), 127-144. https://doi.org/10.12989/cac.2022.29.3.127.
  25. Du, M., Liu, J., Ye, W., Yang, F. and Lin, G. (2022), "A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams", Struct. Eng. Mech., 81(2), 179-194. https://doi.org/10.12989/sem.2022.81.2.179.
  26. Eslami, M.R. (2014), Finite Elements Methods in Mechanics, Springer International Publishing, Switzerland.
  27. Fan, L., Kong, D., Song, J., Moradi, Z., Safa, M. and Khadimallah, M.A. (2022), "Optimization dynamic responses of laminated multiphase shell in thermo-electro-mechanical conditions", Adv. Nano Res., 13(1), 29-45. https://doi.org/10.12989/anr.2022.13.1.029.
  28. Gruttmann, F. and Wagner, W. (2001), "Shear correction factors in Timoshenko's beam theory for arbitrary shaped cross-sections", Comput. Mech., 27, 199-207. https://doi.org/10.1007/s004660100239 .
  29. Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
  30. Hagos, R.W., Choi, G., Sung, H. and Chang, S. (2022), "Substructuring-based dynamic reduction method for vibration analysis of periodic composite structures", Compos. Mater. Eng., 4(1), 43-62. https://doi.org/10.12989/cme.2022.4.1.043.
  31. Hearmon, R.F.S. (1958), "The influence of shear and rotatory inertia on the free flexural vibration of wooden beams", Brit. J. Appl. Phys., 9, 381-388. https://doi.org/10.1088/0508-3443/9/10/301.
  32. Huang, X., Shan, H., Chu, W. and Chen, Y. (2022), "Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects", Adv. Nano Res., 12(1), 101-115. https://doi.org/10.12989/anr.2022.12.1.101.
  33. Hutchinson, J.R. (2001), "Shear coefficients for Timoshenko beam theory", J. Appl. Mech., 68, 87-92. https://doi.org/10.1115/1.1349417.
  34. Jun, Z., Zhushi, R. and Na, T. (2015), "Energy flow, energy density of Timoshenko beam and wave mode incoherence", J. Sound Vib., 354, 104-117. https://doi.org/10.1016/j.jsv.2015.05.029.
  35. Kaneko, T. (1975), "On Timoshenko's correction for shear in vibrating beams", J. Phys. D: Appl. Phys., 8, 1927-1936. https://doi.org/10.1088/0022-3727/8/16/003.
  36. Katariya, P.V. and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., 34(2), 279-288. http://doi.org/10.12989/scs.2020.34.2.279.
  37. Kumar, H.S.N. and Kattimani, S. (2022), "Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities", Struct. Eng. Mech., 82(4), 477-490. https://doi.org/10.12989/sem.2022.82.4.477.
  38. Liu, Y., Wang, X., Liu, L., Wu, B. and Yang, Q. (2022), "On the forced vibration of high-order functionally graded nanotubes under the rotation via intelligent modelling", Adv. Nano Res., 13(1), 47-61. https://doi.org/10.12989/anr.2022.13.1.047.
  39. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. http://doi.org/10.12989/sem.2019.69.4.427.
  40. Man, Y. (2022), "On the dynamic stability of a composite beam via modified high-order theory", Comput. Concrete, 30(2), 151-164. https://doi.org/10.12989/cac.2022.30.2.151.
  41. Mendez-Sanchez, R.A., Morales, A. and Flores, J. (2005), "Experimental check on the accuracy of Timoshenko's beam theory", J. Sound Vib., 279, 508-512. https://doi.org/10.1016/j.jsv.2004.01.050.
  42. Miller, A.K. and Adams, D.F. (1975), "An analytic means of determining the flexural and torsional resonant frequencies of generally orthotropic beams", J. Sound Vib., 41(4), 433-449. https://doi.org/10.1016/S0022-460X(75)80107-6.
  43. Moghtaderi S.H., Faghidian S.A. and Shodja H.M. (2018), "Analytical determination of shear correction factor for Timoshenko beam model", Steel Compos. Struct., 29(4), 483-491. http://doi.org/10.12989/scs.2018.29.4.483.
  44. Mula, S.N., Leite, A.M.S. and Loja, M.A.R. (2022), "Analytical and numerical study of failure in composite plates", Compos. Mater. Eng., 4(1), 23-41. https://doi.org/10.12989/cme.2022.4.1.023.
  45. Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
  46. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-art", Trend. Civil Eng. Its Arch., 3(1), 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
  47. Polat, A. and Kaya, Y. (2022), "Analysis of discontinuous contact problem in two functionally graded layers resting on a rigid plane by using finite element method", Comput. Concrete, 29(4), 247-253. https://doi.org/10.12989/cac.2022.29.4.247.
  48. Rabia, B., Daouadji Tahar, H. and Abderezak, R. (2020), "Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Couple. Syst. Mech., 9(6), 499-519. http://doi.org/10.12989/csm.2020.9.6.499.
  49. Renton, J.D. (2001), "A check on the accuracy of Timoshenko's beam theory", J. Sound Vib., 245, 559-561. https://doi.org/10.1006/jsvi.2000.3540.
  50. Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2022), "Vibrational behavior of exponentially graded joined conical-conical shells", Steel Compos. Struct., 43(5), 603-623. https://doi.org/10.12989/scs.2022.43.5.603.
  51. Rosinger, H.E. and Ritchie, I.G. (1977), "On Timoshenko's correction for shear in vibrating isotropic beams", J. Phys. D: Appl. Phys., 10, 1461-1466. http://doi.org/10.1088/0022-3727/10/11/009.
  52. Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. http://doi.org/10.12989/sss.2020.26.3.361.
  53. Stephen, N.G. (2002), "On a check on the accuracy of Timoshenko's beam theory", J. Sound Vib., 257(4), 809-812. http://doi.org/10.1006/jsvi.2001.4236.
  54. Stephen, N.G. and Levinson, M. (1979), "A second order beam theory", J. Sound Vib., 67, 293-305. https://doi.org/10.1016/0022-460X(79)90537-6.
  55. Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
  56. Teh, K.K. and Huang, C.C. (1979), "The vibrations of generally orthotropic beams, a finite element approach", J. Sound Vib., 62(2), 195-206. https://doi.org/10.1016/0022460X(79)90021-X.
  57. Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete., 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
  58. Timoshenko, S.P. (1922), "On the transverse vibration of bars of uniform cross-section", London, Edinburgh, Dublin Philos. Mag. J. Sci., 43(253),125-131. https://doi.org/10.1080/14786442208633855.
  59. Timoshenko, S.P. (1921), "On the correction for shear of differential equation for transverse vibration of prismatic bars", London, Edinburgh, Dublin Philos. Mag. J. Sci., 41(245), 744-746. https://doi.org/10.1080/14786442108636264.
  60. Van Vinh, P. (2021), "Deflections, stresses and free vibration analysis of bi-functionally graded sandwich plates resting on Pasternak's elastic foundations via a hybrid quasi-3D theory", Mech. Bas. Des. Struct. Mach., 1-32. https://doi.org/10.1080/15397734.2021.1894948.
  61. Vinson, J.R. and Vinson, J.R. (1993), "Vibrations of shells composed of composite materials", Behav. Shell. Compos. Isotrop. Compos. Mater., 427-446. https://doi.org/10.1007/978-94-015-8141-7_21.
  62. Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
  63. Vlachoutsis, S. (1992), "Shear correction factors for plates and shells", Int. J. Numer. Meth. Eng., 33(7), 1537-1552. https://doi.org/10.1002/nme.1620330712.
  64. Vrabie, M., Chiriac, R. and Baetu, S.A. (2017), "Studies regarding the shear correction factor in the mindlin plate theory for sandwich plates", Adv. Eng. Forum, 21, 301-308. https://doi.org/10.4028/www.scientific.net/AEF.21.301.
  65. Wang, X.Q. and So, R.M.C. (2015), "Timoshenko beam theory: A perspective based on the wave-mechanics approaches", Wave Motion, 57, 64-87. https://doi.org/10.1016/j.wavemoti.2015.03.005.
  66. Whitney, J.M. (1972), "Stress analysis of thick laminated composite and sandwich plates", J. Compos. Mater., 6(4), 426-440. https://doi.org/10.1177/002199837200600401.
  67. Wu, X. and Fang, T. (2022), "Intelligent computer modeling of large amplitude behavior of FG inhomogeneous nanotubes", Adv. Nano Res., 12(6), 617-627. https://doi.org/10.12989/anr.2022.12.6.617.
  68. Yaghoobi, H. and Taheri, F. (2020), "Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets", Compos. Struct., 252, 112700. https://doi.org/10.1016/j.compstruct.2020.112700.
  69. Yaylaci, E.U., Yaylaci, M., Olmez, H. and Birinci, A. (2020a), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.551.
  70. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org10.12989/sem.2016.57.6.1143.
  71. Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
  72. Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661.
  73. Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2020b), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
  74. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021b), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
  75. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A. (2021a), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
  76. Yaylaci, M., Yayli, M., Yaylaci, E.U., Olmez, H. and Birinci, A. (2021c), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech, 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
  77. Zenzen, R., Khatir, S., Belaidi, I., Cuong-Le, T. and Abdel Wahab, M. (2020), "A modified transmissibility indicator and Artificial Neural Network for damage identification and quantification in laminated composite structures", Compos. Struct., 248, 112497. https://doi.org/10.1016/j.compstruct.2020.112497.
  78. Zhu, F.Y., Lim, H.J., Choi, H. and Yun, G.J. (2022), "A hierarchical micromechanics model for nonlinear behavior with damage of SMC composites with wavy fiber", Compos. Mater. Eng., 4(1), 1-21. https://doi.org/10.12989/cme.2022.4.1.001.