References
- Abarcar, R.B. and Cunnif, P.F. (1972), "The vibration of cantilever beams of fiber reinforced material", J. Compos. Mater., 6(4), 504-517. https://doi.org/10.1177/002199837200600406.
- Abderezak, R., Hassaine Daouadji, T. and Rabia, B. (2021), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Couple. Syst. Mech., 6(2), 117-133. http://doi.org/10.12989/acd.2021.6.2.117.
- Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. http://doi.org/10.12989/sem.2015.54.1.069.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/scs.2022.42.5.649.
- Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/sem.2022.81.6.705.
- Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. http://doi.org/10.12989/cac.2019.24.1.037.
- Attia, MA. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. http://doi.org/10.12989/scs.2019.30.6.603.
- Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37-47. https://doi.org/10.12989/anr.2022.12.1.037.
- Bert, C.W. (1973), "Simplified analysis of static shear factors for beam of nonhomogeneous cross-section", J. Compos. Mater., 7(4), 525-529. https://doi.org/10.1177/002199837300700410.
- Bochkareva, S.A. and Lekomtsev, S.V. (2022), "Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells", Struct. Eng. Mech., 81(6), 769-780. https://doi.org/10.12989/sem.2022.81.6.769.
- Chan, K.T., Lai, K.F., Stephen, N.G. and Young, K. (2011), "A new method to determine the shear coefficient of Timoshenko beam theory", J. Sound Vib., 330, 3488-3497. https://doi.org/10.1016/j.jsv.2011.02.012.
- Chen, W.R. (2012), "Parametric studies on bending of twisted timoshenko beams under complex loadings", J. Mech., 28, N1-N6. https://doi.org/10.1017/jmech.2012.23.
- Chinnapandi, L.B.M., Pitchaimani, J. and Eltaher, M.A. (2022), "Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads", Steel Compos. Struct., 44(6), 829-843. https://doi.org/10.12989/scs.2022.44.6.829.
- Cho, J.R. (2022a), "Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method", Struct. Eng. Mech., 84(6), 723-731. https://doi.org/10.12989/sem.2022.84.6.723.
- Cho, J.R. (2022b), "Nonlinear bending analysis of functionally graded CNT-reinforced composite plates", Steel Compos. Struct., 42(1), 23-32. https://doi.org/10.12989/scs.2022.42.1.023.
- Choi, S.H., Heo, I., Kim, J.H., Jeong, H., Lee, J.Y. and Kim, K.S. (2022), "Flexural behavior of post-tensioned precast concrete girder at negative moment region", Comput. Concrete, 30(1), 75-84. https://doi.org/10.12989/cac.2022.30.1.075.
- Chow, T.S. (1971), "On the propagation of flexural waves in an orthotropic laminated plate and its response to an impulsive load", J. Compos. Mater., 5(3), 306-319. https://doi.org/10.1177/002199837100500302.
- Cowper, G.R. (1966), "The shear coefficient in Timoshenko's beam theory", J. Appl. Mech., 33(2), 335-340. https://doi.org/10.1115/1.3625046.
- Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P. and Abdel Wahab, M. (2022a), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B: Condens. Matter., 631, 413726. https://doi.org/10.1016/j.physb.2022.413726.
- Cuong-Le, T., Nguyen, K.D., Lee, J. Rabczuk, T. and Nguyen-Xuan, H. (2022b), "A 3D nano scale IGA for free vibration and buckling analyses of multi-directional FGM nanoshells", Nanotechnol., 33(6), 065703. https://doi.org/10.1088/1361-6528/ac32f9.
- Dharmarajan, S. and McCutchen, Jr. H. (1973), "Shear coefficients for orthotropic beams", J. Compos. Mater., 7, 530-535. https://doi.org/10.1177/002199837300700411.
- Ding, F., Ding, H., He, C., Wang, L. and Lyu, F. (2022), "Method for flexural stiffness of steel-concrete composite beams based on stiffness combination coefficients", Comput. Concrete, 29(3), 127-144. https://doi.org/10.12989/cac.2022.29.3.127.
- Du, M., Liu, J., Ye, W., Yang, F. and Lin, G. (2022), "A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams", Struct. Eng. Mech., 81(2), 179-194. https://doi.org/10.12989/sem.2022.81.2.179.
- Eslami, M.R. (2014), Finite Elements Methods in Mechanics, Springer International Publishing, Switzerland.
- Fan, L., Kong, D., Song, J., Moradi, Z., Safa, M. and Khadimallah, M.A. (2022), "Optimization dynamic responses of laminated multiphase shell in thermo-electro-mechanical conditions", Adv. Nano Res., 13(1), 29-45. https://doi.org/10.12989/anr.2022.13.1.029.
- Gruttmann, F. and Wagner, W. (2001), "Shear correction factors in Timoshenko's beam theory for arbitrary shaped cross-sections", Comput. Mech., 27, 199-207. https://doi.org/10.1007/s004660100239 .
- Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
- Hagos, R.W., Choi, G., Sung, H. and Chang, S. (2022), "Substructuring-based dynamic reduction method for vibration analysis of periodic composite structures", Compos. Mater. Eng., 4(1), 43-62. https://doi.org/10.12989/cme.2022.4.1.043.
- Hearmon, R.F.S. (1958), "The influence of shear and rotatory inertia on the free flexural vibration of wooden beams", Brit. J. Appl. Phys., 9, 381-388. https://doi.org/10.1088/0508-3443/9/10/301.
- Huang, X., Shan, H., Chu, W. and Chen, Y. (2022), "Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects", Adv. Nano Res., 12(1), 101-115. https://doi.org/10.12989/anr.2022.12.1.101.
- Hutchinson, J.R. (2001), "Shear coefficients for Timoshenko beam theory", J. Appl. Mech., 68, 87-92. https://doi.org/10.1115/1.1349417.
- Jun, Z., Zhushi, R. and Na, T. (2015), "Energy flow, energy density of Timoshenko beam and wave mode incoherence", J. Sound Vib., 354, 104-117. https://doi.org/10.1016/j.jsv.2015.05.029.
- Kaneko, T. (1975), "On Timoshenko's correction for shear in vibrating beams", J. Phys. D: Appl. Phys., 8, 1927-1936. https://doi.org/10.1088/0022-3727/8/16/003.
- Katariya, P.V. and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., 34(2), 279-288. http://doi.org/10.12989/scs.2020.34.2.279.
- Kumar, H.S.N. and Kattimani, S. (2022), "Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities", Struct. Eng. Mech., 82(4), 477-490. https://doi.org/10.12989/sem.2022.82.4.477.
- Liu, Y., Wang, X., Liu, L., Wu, B. and Yang, Q. (2022), "On the forced vibration of high-order functionally graded nanotubes under the rotation via intelligent modelling", Adv. Nano Res., 13(1), 47-61. https://doi.org/10.12989/anr.2022.13.1.047.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. http://doi.org/10.12989/sem.2019.69.4.427.
- Man, Y. (2022), "On the dynamic stability of a composite beam via modified high-order theory", Comput. Concrete, 30(2), 151-164. https://doi.org/10.12989/cac.2022.30.2.151.
- Mendez-Sanchez, R.A., Morales, A. and Flores, J. (2005), "Experimental check on the accuracy of Timoshenko's beam theory", J. Sound Vib., 279, 508-512. https://doi.org/10.1016/j.jsv.2004.01.050.
- Miller, A.K. and Adams, D.F. (1975), "An analytic means of determining the flexural and torsional resonant frequencies of generally orthotropic beams", J. Sound Vib., 41(4), 433-449. https://doi.org/10.1016/S0022-460X(75)80107-6.
- Moghtaderi S.H., Faghidian S.A. and Shodja H.M. (2018), "Analytical determination of shear correction factor for Timoshenko beam model", Steel Compos. Struct., 29(4), 483-491. http://doi.org/10.12989/scs.2018.29.4.483.
- Mula, S.N., Leite, A.M.S. and Loja, M.A.R. (2022), "Analytical and numerical study of failure in composite plates", Compos. Mater. Eng., 4(1), 23-41. https://doi.org/10.12989/cme.2022.4.1.023.
- Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
- Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-art", Trend. Civil Eng. Its Arch., 3(1), 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
- Polat, A. and Kaya, Y. (2022), "Analysis of discontinuous contact problem in two functionally graded layers resting on a rigid plane by using finite element method", Comput. Concrete, 29(4), 247-253. https://doi.org/10.12989/cac.2022.29.4.247.
- Rabia, B., Daouadji Tahar, H. and Abderezak, R. (2020), "Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Couple. Syst. Mech., 9(6), 499-519. http://doi.org/10.12989/csm.2020.9.6.499.
- Renton, J.D. (2001), "A check on the accuracy of Timoshenko's beam theory", J. Sound Vib., 245, 559-561. https://doi.org/10.1006/jsvi.2000.3540.
- Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2022), "Vibrational behavior of exponentially graded joined conical-conical shells", Steel Compos. Struct., 43(5), 603-623. https://doi.org/10.12989/scs.2022.43.5.603.
- Rosinger, H.E. and Ritchie, I.G. (1977), "On Timoshenko's correction for shear in vibrating isotropic beams", J. Phys. D: Appl. Phys., 10, 1461-1466. http://doi.org/10.1088/0022-3727/10/11/009.
- Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. http://doi.org/10.12989/sss.2020.26.3.361.
- Stephen, N.G. (2002), "On a check on the accuracy of Timoshenko's beam theory", J. Sound Vib., 257(4), 809-812. http://doi.org/10.1006/jsvi.2001.4236.
- Stephen, N.G. and Levinson, M. (1979), "A second order beam theory", J. Sound Vib., 67, 293-305. https://doi.org/10.1016/0022-460X(79)90537-6.
- Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
- Teh, K.K. and Huang, C.C. (1979), "The vibrations of generally orthotropic beams, a finite element approach", J. Sound Vib., 62(2), 195-206. https://doi.org/10.1016/0022460X(79)90021-X.
- Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete., 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
- Timoshenko, S.P. (1922), "On the transverse vibration of bars of uniform cross-section", London, Edinburgh, Dublin Philos. Mag. J. Sci., 43(253),125-131. https://doi.org/10.1080/14786442208633855.
- Timoshenko, S.P. (1921), "On the correction for shear of differential equation for transverse vibration of prismatic bars", London, Edinburgh, Dublin Philos. Mag. J. Sci., 41(245), 744-746. https://doi.org/10.1080/14786442108636264.
- Van Vinh, P. (2021), "Deflections, stresses and free vibration analysis of bi-functionally graded sandwich plates resting on Pasternak's elastic foundations via a hybrid quasi-3D theory", Mech. Bas. Des. Struct. Mach., 1-32. https://doi.org/10.1080/15397734.2021.1894948.
- Vinson, J.R. and Vinson, J.R. (1993), "Vibrations of shells composed of composite materials", Behav. Shell. Compos. Isotrop. Compos. Mater., 427-446. https://doi.org/10.1007/978-94-015-8141-7_21.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Vlachoutsis, S. (1992), "Shear correction factors for plates and shells", Int. J. Numer. Meth. Eng., 33(7), 1537-1552. https://doi.org/10.1002/nme.1620330712.
- Vrabie, M., Chiriac, R. and Baetu, S.A. (2017), "Studies regarding the shear correction factor in the mindlin plate theory for sandwich plates", Adv. Eng. Forum, 21, 301-308. https://doi.org/10.4028/www.scientific.net/AEF.21.301.
- Wang, X.Q. and So, R.M.C. (2015), "Timoshenko beam theory: A perspective based on the wave-mechanics approaches", Wave Motion, 57, 64-87. https://doi.org/10.1016/j.wavemoti.2015.03.005.
- Whitney, J.M. (1972), "Stress analysis of thick laminated composite and sandwich plates", J. Compos. Mater., 6(4), 426-440. https://doi.org/10.1177/002199837200600401.
- Wu, X. and Fang, T. (2022), "Intelligent computer modeling of large amplitude behavior of FG inhomogeneous nanotubes", Adv. Nano Res., 12(6), 617-627. https://doi.org/10.12989/anr.2022.12.6.617.
- Yaghoobi, H. and Taheri, F. (2020), "Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets", Compos. Struct., 252, 112700. https://doi.org/10.1016/j.compstruct.2020.112700.
- Yaylaci, E.U., Yaylaci, M., Olmez, H. and Birinci, A. (2020a), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.551.
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org10.12989/sem.2016.57.6.1143.
- Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
- Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661.
- Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2020b), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
- Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021b), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
- Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A. (2021a), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
- Yaylaci, M., Yayli, M., Yaylaci, E.U., Olmez, H. and Birinci, A. (2021c), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech, 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
- Zenzen, R., Khatir, S., Belaidi, I., Cuong-Le, T. and Abdel Wahab, M. (2020), "A modified transmissibility indicator and Artificial Neural Network for damage identification and quantification in laminated composite structures", Compos. Struct., 248, 112497. https://doi.org/10.1016/j.compstruct.2020.112497.
- Zhu, F.Y., Lim, H.J., Choi, H. and Yun, G.J. (2022), "A hierarchical micromechanics model for nonlinear behavior with damage of SMC composites with wavy fiber", Compos. Mater. Eng., 4(1), 1-21. https://doi.org/10.12989/cme.2022.4.1.001.