DOI QR코드

DOI QR Code

Topology optimization of bracing systems in buildings considering the effects of the wind

  • Paulo U. Silva (Programa de Pos-Graduacao em Engenharia Civil e Ambiental, Universidade Federal de Pernambuco) ;
  • Rayanne E.L. Pereira (Programa de Pos-Graduacao em Engenharia Civil e Ambiental, Universidade Federal de Pernambuco) ;
  • Gustavo Bono (Programa de Pos-Graduacao em Engenharia Civil e Ambiental, Universidade Federal de Pernambuco)
  • 투고 : 2022.02.03
  • 심사 : 2023.04.06
  • 발행 : 2023.05.25

초록

Nowadays, urban centers are increasingly vertical, making architects and engineers look for more efficient tools to analyze the effects of wind on tall buildings. Topology optimization can be used as an efficient tool for the design of bracing systems. Therefore, this work obtained the wind loads that act in the CAARC building, following the Brazilian standard NBR 6123/1988 and using Computational Fluid Dynamics. Four loading situations were considered, using the SIMP and BESO methods to optimize two-dimensional structures. A comparison between the SIMP and BESO methods is presented, showing the differences in the geometry of the solution found by both methods, the percentage variation in the objective function values and the dimensionless processing time. The solutions obtained through the loads obtained by the Brazilian standard are also compared with the numerical solutions obtained by CFD. The results show that the BESO method presented more rigid structures compared to the SIMP method. The bracing structures obtained with the SIMP method always present similar patterns in the distribution and quantity of bars, in contrast to the BESO method where no characteristic topology pattern was observed. It was concluded that even though the structures obtained by the BESO method presented greater stiffness, the SIMP method was less susceptible to the methodology used for the determination of wind loads. Additionally, it was evident the great potential that the combination topology optimization and computational wind engineering have in the design of bracing systems of high functional and aesthetic standards.

키워드

과제정보

This study was financed in part by the Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco (FACEPE)-APQ-0225-3-05/14 and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brazil (CAPES)-Finance Code 001.

참고문헌

  1. Akif Kutuk, M. and Gov, I (2014), "Optimum bracing design under wind load by using topology optimization", Wind Struct., 18(5), 497-510. https://doi.org/10.12989/was.2014.18.5.497.
  2. Ali, M.M. and Moon, K.S. (2018), "Advances in structural systems for tall building: emerging developments for contemporary urban giants", Build., 8(1), 104. https://doi.org/10.3390/buildings8080104.
  3. Andreassenn, E, Sigmund, O, Clausen, A, Schevenels, M. and Lazarov, B.S. (2011), "Efficient topology optimization in MATLAB using 88 lines of code", Struct. Multidisc. Optim., 43, 1-16. http://doi.org/10.1007/s00158-010-0594-7.
  4. Associacao Brasileira de Normas Tecnicas (1988), NBR 6123: Forcas Devidas ao Vento em Edificacoes, Rio de Janeiro, Brazil.
  5. Baghbanan, A.M., Alaghmandan, M., Golabchi, M. and Barazandeh, F. (2023), "Architectural form finding and computational design of tall building applying topology optimization against lateral loads", J. Arch. Eng., 29(1), 04022038. https://doi.org/10.1061/JAEIED.AEENG-1380.
  6. Banh, T.T. and Lee, D. (2018), "Multi-material topology optimization design for continuum structures with crack patterns", Compos. Struct., 186, 193-209. https://doi.org/10.1016/j.compstruct.2017.11.088.
  7. Banh, T.T., Luu, N.G. and Lee, D. (2021b), "A non-homogeneous multi-material topology optimization approach for functionally graded structures with cracks", Compos. Struct., 273, 114230. https://doi.org/10.1016/j.compstruct.2021.114230.
  8. Banh, T.T., Luu, N.G., Lieu, Q.X., Lee, J., Kang, J. and Lee, D. (2021a), "Multiple bi-directional FGMs topology optimization approach with a preconditioned conjugate gradient multigrid", Steel Compos. Struct., 41(3), 385-402. https://doi.org/10.12989/scs.2021.41.3.385.
  9. Bendsoe, M.P. (1989), "Optimal shape design as a material distribution problem", Struct. Optim., 1, 193-202. https://doi.org/10.1007/BF01650949.
  10. Bendsoe, M.P. and Sigmund, O. (2003), Topology OptimizationTheory, Methods and Applications, Springer, New York, NY, USA.
  11. Blessmann, J. (2009), Acao do Vento em Telhados, 2th Edition, Editora da UFRGS, Porto Alegre, RS, Brazil.
  12. Bobby, S., Spence, S.M.J., Bernardini, E. and Kareem, A. (2014), "Performance-based topology optimization for wind-excited tall buldings: A framework", Eng. Struct., 74, 242-255. http://doi.org/10.1016/j.engstruct.2014.05.043.
  13. Bono, G., Bono, G.F.F. and Lyra, P.R.M. (2011), "Numerical simulation of incompressible flows with Large Eddy Simulation", Mecanica Computacional, 30, 1423-1440.
  14. Bourdin, B. (2001), "Filters in topology optimization", Int. J. Numer. Meth. Eng., 50(9), 2143-2158. https://doi.org/10.1002/nme.116.
  15. Bourdin, B. and Chambolle, A. (2003), "The phase-field method in optimal design", Mach. Mater., 207-215. http://doi.org/10.1007/1-4020-4752-5_21.
  16. Cabral, D.N., Bono, G. and Bono, G.F.F. (2012), "Parametric study of passive control devices of vortex-induced vibration", Mecanica Computacional, 31, 69-84.
  17. Dijk, N.P.V., Maute, K., Langelaar, M. and Keulen, F.V. (2013), "Level-set methods for structural topology optimization: a review", Struct. Multidisc. Optim., 48(3), 437-472. https://doi.org/10.1007/s00158-013-0912-y.
  18. Du, Y., Yan, S., Zhang, Y., Xie, H. and Tian, Q. (2015), "A modified interpolation approach for topology optimization", Acta Mechanica Solida Sinica, 28(4), 420-430. http://doi.org/10.1016/S0894-9166(15)30027-6.
  19. Franke, J., Hellsten, A., Schlunzen, H. and Carissimo, B. (2007), "Best practice guideline for the CFD simulation of flows in the urban environment", COST Action, 732, 51.
  20. Goli, A., Alaghmandan, M. and Barazandeh, F. (2021), "Parametric structural topology optimization of high-rise buildings considering wind and gravity loads", J. Arch. Eng., 27(4), 04021038. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000511.
  21. Gunel, M.H. and Ilgin, H.E. (2007), "A proposal for the classification of structural systems of tall buildings", Build. Environ., 42, 2667-2675. https://doi.org/10.1016/j.buildenv.2006.07.007.
  22. Hu, N., Feng, P. and Dai, G.L. (2014), "Structural art: past, present and future", Eng. Struct., 79, 407-416. http://doi.org/10.1016/j.engstruct.2014.08.040.
  23. Huang, X. and Xie, Y.M. (2010), Evolutionary Topology Optimization of Continuum Structures, 1th Edition, Wiley, New Delhi, India.
  24. Huang, X., Xie, Y.M. and Burry, M.C. (2007), "Advantages of BiDirectional Evolutionary Structural Optimization (BESO) over Evolutionary Structural Optimization (ESO)", Adv. Struct. Eng., 10(6), 727-737. https://doi.org/10.1260/136943307783571436.
  25. IEA (2013), Modernizing Building Energy Codes to Secure Our Global Future: Policy Pathway.
  26. Kodmany, K.A. and Ali, M.M. (2016), "An overview of structural and aesthetic developments in tall buildings using exterior bracing and diagrid systems", Int. J. High-Rise Build., 5(4), 271-291. http://doi.org/10.21022/IJHRB.2016.5.4.271
  27. Kosutova, K., Van Hooff, T., Vanderwel, C., Blocken B. and Hensen, J. (2019), "Cross-ventilation in a generic building equipped with louvers: Wind-tunnel experiments and CFD simulations", Build. Environ., 154, 263-280. http://doi.org/10.1016/j.buildenv.2019.03.019.
  28. Kureski, R., Rodrigues, R.L., Moretto, A.C., Sesso Filho, U.A. and Hardt, L.P.A. (2008), "O macrossetor da construcao civil na economia brasileira em 2004", Ambiente Construido, 8(1), 7-19.
  29. Kutylowski, R. and Rasiak, B. (2014), "Application of topology optimization to bridge ginder design", Struct. Eng. Mech., 51(1), 39-66. https://doi.org/10.12989/sem.2014.51.1.039.
  30. Kutylowski, R. and Szwechlowicz, M. (2020), "Topology optimization-a variational formulation of the problem and example application", Periodica Polytechnica Civil Eng., 64(1), 101-121. https://doi.org/10.3311/PPci.13999.
  31. Lee, S. and Tovar, A. (2014), "Outrigger placement in tall buildings using topology optimization", Eng. Struct., 74, 122-129. http://doi.org/10.1016/j.engstruct.2014.05.019.
  32. Liang, Q., Xie, Y. and Steven, G. (2000), "Optimal topology design of bracing systems for multistory steel frames", J. Struct. Eng., 126(7), 823-830. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:7(823).
  33. Londono, O.G. and Paulino, G.H. (2021), "PolyDyna: a Matlab implementation for topology optimization of structures subjected to dynamic loads", Struct. Multidisc. Optim., 64, 957-990. https://doi.org/10.1007/s00158-021-02859-6.
  34. Loyola, R.A., Querin, O.M., Jimenez, A.G. and Gordoa, C.A. (2018), "A sequential element rejection and admission (SERA) topology optimization code written in Matlab", Struct. Multidisc. Optim., 58, 1297-1310. https://doi.org/10.1007/s00158-018-1939-x.
  35. Lu, H., Gilbert, M. and Tyas, A. (2019), "Layout optimization of building frames subject to gravity and lateral load cases", Struct. Multidisc. Optim., 60, 1561-1570. https://doi.org/10.1007/s00158-019-02283-x.
  36. Mavrokapnidis, D., Mitropoulou, C.C. and Lagaros, N.D. (2019), "Environmental assessment of cost optimized structural systems in tall buildings", J. Build. Eng., 24, 100730. https://doi.org/10.1016/j.jobe.2019.100730.
  37. Melbourne, W.H. (1980), "Comparison of the measurements on the CAARC standard tall building model in simulated model wind flows", J. Wind Eng. Indus. Aerodyn., 6(1), 73-88. https://doi.org/10.1016/0167-6105(80)90023-9.
  38. Mijar, A.R., Swan, C.C., Arora, J.S. and Kosaka, I. (1998), "Continuum topology optimization for concept design of frame bracing systems", J. Struct. Eng., 124(5), 541-550. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(541).
  39. Montarezi, H. and Blocken, B. (2013), "CFD simulations of windinduced pressure coefficients on buildings with and without balconies: Validation and sensitivity analysis", Build. Environ., 60, 137-149. https://doi.org/10.1016/j.buildenv.2012.11.012.
  40. Nascimento, A.V., Bono, G. and Bono G.F.F. (2017), "Numerical analysis of geometric effects on natural ventilation in low-rise buildings", Mecanica Computacional, 35, 1069-1077.
  41. Nezhad, M.R.S. and Mahmoudi, M. (2021), "Experimental and analytical evaluation of the seismic performance of Y-shaped braces equipped with yielding diagonal dampers", J. Build. Eng., 42, 102362. https://doi.org/10.1016/j.jobe.2021.102362.
  42. Nguyen, X.H. and Lee, J. (2015), "Sizing, shape a and topology optimization of trusses with energy approach", Struct. Eng. Mech., 56(1), 107-121. https://doi.org/10.12989/sem.2015.56.1.107.
  43. Nouri, F. and Ashtari, P. (2015), "Weight and topology optimization of outrigger-braced tall steel structures subjected to the wind loading using GA", Wind Struct., 20(4), 489-508. https://doi.org/10.12989/was.2015.20.4.489.
  44. Pereira, R.E.L. (2018), "Otimizacao topologica de sistema de contraventamento em edificacoes considerando os efeitos do vento", Msc. Thesis, Federal University of Pernambuco, Brazil.
  45. Qiao, S., Han, X., Zhou, K. and Ji, J. (2016), "Seismic analysis of steel structure with brace configuration using topology optimization", Steel Compos. Struct., 21(3), 501-515. https://doi.org/10.12989/scs.2016.21.3.501.
  46. Querin, O.M., Steven G.P. and Xie. Y.M. (2000), "Evolutionary structural optimisation using an additive algorithm", Finite Elem. Anal. Des., 34(3-4), 291-308. http://doi.org/10.1016/S0168-874X(99)00044-X.
  47. Ribeiro, T.P., Bernardo, L.F.A. and Andrade J.M.A. (2021), "Topology optimisation in structural steel design for additive manufacturing", Appl. Sci., 11(5), 2112. https://doi.org/10.3390/app11052112.
  48. Rozvany, G.I.N. (2000), "The SIMP method in topology optimization-Theoretical background, advantages and new applications", 8th Symposium on Multidisciplinary Analysis and Optimization, June.
  49. Rozvany, G.I.N. (2001), "Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics", Struct. Multidisc. Optim., 21, 90-108. https://doi.org/10.1007/s001580050174.
  50. Rozvany, G.I.N. (2009), "A critical review of established methods of structural topology optimization", Struct. Multidisc. Optim., 37(3), 217-237. http://doi.org/10.1007/s00158-007-0217-0.
  51. Rozvany, G.I.N., Zhou, M. and Birker, T. (1992), "Generalized shape optimization without homogenization", Struct. Optim., 4, 250-252. https://doi.org/10.1007/BF01742754.
  52. Sigmund, O. and Petersson, J. (1998), "Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh dependencies and local minima", Struct. Optim., 16, 68-75. https://doi.org/10.1007/BF01214002.
  53. Simonetti, H.L., Almeida, V.S. and Neves, F.A. (2019), "Topology optimization: compliance minimization using SESO with bilinear square element", London J. Eng. Res., 19(1), 1.
  54. Stromberg, L.L., Beghini, A., Baker, W.F. and Paulino, G.H. (2011), "Application of layout and topology optimization using pattern gradation for the conceptual design of buildings", Struct. Multidisc. Optim., 43, 165-180. https://doi.org/10.1007/s00158-010-0563-1.
  55. Tang, J., Xie, Y.M. and Felicetti, P. (2014), "Conceptual design of buildings subjected to wind load by using topology optimization", Wind Struct., 18(1), 21-35. https://doi.org/10.12989/was.2020.18.1.021.
  56. Teimouri, M. and Asgari, M. (2019), "Multi-objective BESO topology optimization for stiffness and frequency of continuum structures", Struct. Eng. Mech., 72(2), 181-190. https://doi.org/10.12989/sem.2019.72.2.181.
  57. Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T, Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Indus. Aerodyn., 96, 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058.
  58. Tovar, A. and Khandelwal, K. (2013), "Topology optimization for minimum compliance using a control strategy", Eng. Struct., 48, 674-682. http://doi.org/10.1016/j.engstruct.2012.12.008.
  59. Watts, S., Arrighi, W., Kudo, J., Tortorelli, D.A. and White, D.A. (2019), "Simple, accurate surrogate models of the elastic response of three-dimensional open truss micro-architectures with application to multiscale topology design", Struct. Multidisc. Optim., 60(5), 1887-1920. https://doi.org/10.1007/s00158-019-02297-5.
  60. Xia, Q., Shi, T. and Xia, L. (2019), "Stable hole nucleation in level set based topology optimization by using the material removal scheme of BESO", Comput. Meth. Appl. Mech. Eng., 343(1), 438-452. http://doi.org/10.1016/j.cma.2018.09.002.
  61. Xie, Y.M. and Steven, G.P. (1996), "Evolutionary structural optimization for dynamic problems", Comput. Struct., 58(6), 1067-1073. https://doi.org/10.1016/0045-7949(95)00235-9.
  62. Zegard, T. and Paulino, G.H. (2016), "Bridging topology optimization and additive manufacturing", Struct. Multidisc. Optim., 53, 175-192. https://doi.org/10.1007/s00158-015-1274-4.
  63. Zegard, T., Hartz, C., Mazurek, A. and Baker, W.F. (2020), "Advancing building engineering through structural and topology optimization", Struct. Multidisc. Optim., 62, 915-935. https://doi.org/10.1007/s00158-020-02506-6.
  64. Zhiyi, Y., Kemin, Z. and Shengfang, Q. (2018), "Topology optimization of reinforced concrete structure using composite truss-like model", Struct. Eng. Mech., 67(1), 79-85. https://doi.org/10.12989/sem.2018.67.1.079.
  65. Zhou, K. (2016), "Topology optimization of bracing systems using a truss-like material model", Struct. Eng. Mech., 58(2), 231-242. https://doi.org/10.12989/sem.2016.58.2.231.