과제정보
This study was financed in part by the Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco (FACEPE)-APQ-0225-3-05/14 and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brazil (CAPES)-Finance Code 001.
참고문헌
- Akif Kutuk, M. and Gov, I (2014), "Optimum bracing design under wind load by using topology optimization", Wind Struct., 18(5), 497-510. https://doi.org/10.12989/was.2014.18.5.497.
- Ali, M.M. and Moon, K.S. (2018), "Advances in structural systems for tall building: emerging developments for contemporary urban giants", Build., 8(1), 104. https://doi.org/10.3390/buildings8080104.
- Andreassenn, E, Sigmund, O, Clausen, A, Schevenels, M. and Lazarov, B.S. (2011), "Efficient topology optimization in MATLAB using 88 lines of code", Struct. Multidisc. Optim., 43, 1-16. http://doi.org/10.1007/s00158-010-0594-7.
- Associacao Brasileira de Normas Tecnicas (1988), NBR 6123: Forcas Devidas ao Vento em Edificacoes, Rio de Janeiro, Brazil.
- Baghbanan, A.M., Alaghmandan, M., Golabchi, M. and Barazandeh, F. (2023), "Architectural form finding and computational design of tall building applying topology optimization against lateral loads", J. Arch. Eng., 29(1), 04022038. https://doi.org/10.1061/JAEIED.AEENG-1380.
- Banh, T.T. and Lee, D. (2018), "Multi-material topology optimization design for continuum structures with crack patterns", Compos. Struct., 186, 193-209. https://doi.org/10.1016/j.compstruct.2017.11.088.
- Banh, T.T., Luu, N.G. and Lee, D. (2021b), "A non-homogeneous multi-material topology optimization approach for functionally graded structures with cracks", Compos. Struct., 273, 114230. https://doi.org/10.1016/j.compstruct.2021.114230.
- Banh, T.T., Luu, N.G., Lieu, Q.X., Lee, J., Kang, J. and Lee, D. (2021a), "Multiple bi-directional FGMs topology optimization approach with a preconditioned conjugate gradient multigrid", Steel Compos. Struct., 41(3), 385-402. https://doi.org/10.12989/scs.2021.41.3.385.
- Bendsoe, M.P. (1989), "Optimal shape design as a material distribution problem", Struct. Optim., 1, 193-202. https://doi.org/10.1007/BF01650949.
- Bendsoe, M.P. and Sigmund, O. (2003), Topology OptimizationTheory, Methods and Applications, Springer, New York, NY, USA.
- Blessmann, J. (2009), Acao do Vento em Telhados, 2th Edition, Editora da UFRGS, Porto Alegre, RS, Brazil.
- Bobby, S., Spence, S.M.J., Bernardini, E. and Kareem, A. (2014), "Performance-based topology optimization for wind-excited tall buldings: A framework", Eng. Struct., 74, 242-255. http://doi.org/10.1016/j.engstruct.2014.05.043.
- Bono, G., Bono, G.F.F. and Lyra, P.R.M. (2011), "Numerical simulation of incompressible flows with Large Eddy Simulation", Mecanica Computacional, 30, 1423-1440.
- Bourdin, B. (2001), "Filters in topology optimization", Int. J. Numer. Meth. Eng., 50(9), 2143-2158. https://doi.org/10.1002/nme.116.
- Bourdin, B. and Chambolle, A. (2003), "The phase-field method in optimal design", Mach. Mater., 207-215. http://doi.org/10.1007/1-4020-4752-5_21.
- Cabral, D.N., Bono, G. and Bono, G.F.F. (2012), "Parametric study of passive control devices of vortex-induced vibration", Mecanica Computacional, 31, 69-84.
- Dijk, N.P.V., Maute, K., Langelaar, M. and Keulen, F.V. (2013), "Level-set methods for structural topology optimization: a review", Struct. Multidisc. Optim., 48(3), 437-472. https://doi.org/10.1007/s00158-013-0912-y.
- Du, Y., Yan, S., Zhang, Y., Xie, H. and Tian, Q. (2015), "A modified interpolation approach for topology optimization", Acta Mechanica Solida Sinica, 28(4), 420-430. http://doi.org/10.1016/S0894-9166(15)30027-6.
- Franke, J., Hellsten, A., Schlunzen, H. and Carissimo, B. (2007), "Best practice guideline for the CFD simulation of flows in the urban environment", COST Action, 732, 51.
- Goli, A., Alaghmandan, M. and Barazandeh, F. (2021), "Parametric structural topology optimization of high-rise buildings considering wind and gravity loads", J. Arch. Eng., 27(4), 04021038. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000511.
- Gunel, M.H. and Ilgin, H.E. (2007), "A proposal for the classification of structural systems of tall buildings", Build. Environ., 42, 2667-2675. https://doi.org/10.1016/j.buildenv.2006.07.007.
- Hu, N., Feng, P. and Dai, G.L. (2014), "Structural art: past, present and future", Eng. Struct., 79, 407-416. http://doi.org/10.1016/j.engstruct.2014.08.040.
- Huang, X. and Xie, Y.M. (2010), Evolutionary Topology Optimization of Continuum Structures, 1th Edition, Wiley, New Delhi, India.
- Huang, X., Xie, Y.M. and Burry, M.C. (2007), "Advantages of BiDirectional Evolutionary Structural Optimization (BESO) over Evolutionary Structural Optimization (ESO)", Adv. Struct. Eng., 10(6), 727-737. https://doi.org/10.1260/136943307783571436.
- IEA (2013), Modernizing Building Energy Codes to Secure Our Global Future: Policy Pathway.
- Kodmany, K.A. and Ali, M.M. (2016), "An overview of structural and aesthetic developments in tall buildings using exterior bracing and diagrid systems", Int. J. High-Rise Build., 5(4), 271-291. http://doi.org/10.21022/IJHRB.2016.5.4.271
- Kosutova, K., Van Hooff, T., Vanderwel, C., Blocken B. and Hensen, J. (2019), "Cross-ventilation in a generic building equipped with louvers: Wind-tunnel experiments and CFD simulations", Build. Environ., 154, 263-280. http://doi.org/10.1016/j.buildenv.2019.03.019.
- Kureski, R., Rodrigues, R.L., Moretto, A.C., Sesso Filho, U.A. and Hardt, L.P.A. (2008), "O macrossetor da construcao civil na economia brasileira em 2004", Ambiente Construido, 8(1), 7-19.
- Kutylowski, R. and Rasiak, B. (2014), "Application of topology optimization to bridge ginder design", Struct. Eng. Mech., 51(1), 39-66. https://doi.org/10.12989/sem.2014.51.1.039.
- Kutylowski, R. and Szwechlowicz, M. (2020), "Topology optimization-a variational formulation of the problem and example application", Periodica Polytechnica Civil Eng., 64(1), 101-121. https://doi.org/10.3311/PPci.13999.
- Lee, S. and Tovar, A. (2014), "Outrigger placement in tall buildings using topology optimization", Eng. Struct., 74, 122-129. http://doi.org/10.1016/j.engstruct.2014.05.019.
- Liang, Q., Xie, Y. and Steven, G. (2000), "Optimal topology design of bracing systems for multistory steel frames", J. Struct. Eng., 126(7), 823-830. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:7(823).
- Londono, O.G. and Paulino, G.H. (2021), "PolyDyna: a Matlab implementation for topology optimization of structures subjected to dynamic loads", Struct. Multidisc. Optim., 64, 957-990. https://doi.org/10.1007/s00158-021-02859-6.
- Loyola, R.A., Querin, O.M., Jimenez, A.G. and Gordoa, C.A. (2018), "A sequential element rejection and admission (SERA) topology optimization code written in Matlab", Struct. Multidisc. Optim., 58, 1297-1310. https://doi.org/10.1007/s00158-018-1939-x.
- Lu, H., Gilbert, M. and Tyas, A. (2019), "Layout optimization of building frames subject to gravity and lateral load cases", Struct. Multidisc. Optim., 60, 1561-1570. https://doi.org/10.1007/s00158-019-02283-x.
- Mavrokapnidis, D., Mitropoulou, C.C. and Lagaros, N.D. (2019), "Environmental assessment of cost optimized structural systems in tall buildings", J. Build. Eng., 24, 100730. https://doi.org/10.1016/j.jobe.2019.100730.
- Melbourne, W.H. (1980), "Comparison of the measurements on the CAARC standard tall building model in simulated model wind flows", J. Wind Eng. Indus. Aerodyn., 6(1), 73-88. https://doi.org/10.1016/0167-6105(80)90023-9.
- Mijar, A.R., Swan, C.C., Arora, J.S. and Kosaka, I. (1998), "Continuum topology optimization for concept design of frame bracing systems", J. Struct. Eng., 124(5), 541-550. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(541).
- Montarezi, H. and Blocken, B. (2013), "CFD simulations of windinduced pressure coefficients on buildings with and without balconies: Validation and sensitivity analysis", Build. Environ., 60, 137-149. https://doi.org/10.1016/j.buildenv.2012.11.012.
- Nascimento, A.V., Bono, G. and Bono G.F.F. (2017), "Numerical analysis of geometric effects on natural ventilation in low-rise buildings", Mecanica Computacional, 35, 1069-1077.
- Nezhad, M.R.S. and Mahmoudi, M. (2021), "Experimental and analytical evaluation of the seismic performance of Y-shaped braces equipped with yielding diagonal dampers", J. Build. Eng., 42, 102362. https://doi.org/10.1016/j.jobe.2021.102362.
- Nguyen, X.H. and Lee, J. (2015), "Sizing, shape a and topology optimization of trusses with energy approach", Struct. Eng. Mech., 56(1), 107-121. https://doi.org/10.12989/sem.2015.56.1.107.
- Nouri, F. and Ashtari, P. (2015), "Weight and topology optimization of outrigger-braced tall steel structures subjected to the wind loading using GA", Wind Struct., 20(4), 489-508. https://doi.org/10.12989/was.2015.20.4.489.
- Pereira, R.E.L. (2018), "Otimizacao topologica de sistema de contraventamento em edificacoes considerando os efeitos do vento", Msc. Thesis, Federal University of Pernambuco, Brazil.
- Qiao, S., Han, X., Zhou, K. and Ji, J. (2016), "Seismic analysis of steel structure with brace configuration using topology optimization", Steel Compos. Struct., 21(3), 501-515. https://doi.org/10.12989/scs.2016.21.3.501.
- Querin, O.M., Steven G.P. and Xie. Y.M. (2000), "Evolutionary structural optimisation using an additive algorithm", Finite Elem. Anal. Des., 34(3-4), 291-308. http://doi.org/10.1016/S0168-874X(99)00044-X.
- Ribeiro, T.P., Bernardo, L.F.A. and Andrade J.M.A. (2021), "Topology optimisation in structural steel design for additive manufacturing", Appl. Sci., 11(5), 2112. https://doi.org/10.3390/app11052112.
- Rozvany, G.I.N. (2000), "The SIMP method in topology optimization-Theoretical background, advantages and new applications", 8th Symposium on Multidisciplinary Analysis and Optimization, June.
- Rozvany, G.I.N. (2001), "Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics", Struct. Multidisc. Optim., 21, 90-108. https://doi.org/10.1007/s001580050174.
- Rozvany, G.I.N. (2009), "A critical review of established methods of structural topology optimization", Struct. Multidisc. Optim., 37(3), 217-237. http://doi.org/10.1007/s00158-007-0217-0.
- Rozvany, G.I.N., Zhou, M. and Birker, T. (1992), "Generalized shape optimization without homogenization", Struct. Optim., 4, 250-252. https://doi.org/10.1007/BF01742754.
- Sigmund, O. and Petersson, J. (1998), "Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh dependencies and local minima", Struct. Optim., 16, 68-75. https://doi.org/10.1007/BF01214002.
- Simonetti, H.L., Almeida, V.S. and Neves, F.A. (2019), "Topology optimization: compliance minimization using SESO with bilinear square element", London J. Eng. Res., 19(1), 1.
- Stromberg, L.L., Beghini, A., Baker, W.F. and Paulino, G.H. (2011), "Application of layout and topology optimization using pattern gradation for the conceptual design of buildings", Struct. Multidisc. Optim., 43, 165-180. https://doi.org/10.1007/s00158-010-0563-1.
- Tang, J., Xie, Y.M. and Felicetti, P. (2014), "Conceptual design of buildings subjected to wind load by using topology optimization", Wind Struct., 18(1), 21-35. https://doi.org/10.12989/was.2020.18.1.021.
- Teimouri, M. and Asgari, M. (2019), "Multi-objective BESO topology optimization for stiffness and frequency of continuum structures", Struct. Eng. Mech., 72(2), 181-190. https://doi.org/10.12989/sem.2019.72.2.181.
- Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T, Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Indus. Aerodyn., 96, 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058.
- Tovar, A. and Khandelwal, K. (2013), "Topology optimization for minimum compliance using a control strategy", Eng. Struct., 48, 674-682. http://doi.org/10.1016/j.engstruct.2012.12.008.
- Watts, S., Arrighi, W., Kudo, J., Tortorelli, D.A. and White, D.A. (2019), "Simple, accurate surrogate models of the elastic response of three-dimensional open truss micro-architectures with application to multiscale topology design", Struct. Multidisc. Optim., 60(5), 1887-1920. https://doi.org/10.1007/s00158-019-02297-5.
- Xia, Q., Shi, T. and Xia, L. (2019), "Stable hole nucleation in level set based topology optimization by using the material removal scheme of BESO", Comput. Meth. Appl. Mech. Eng., 343(1), 438-452. http://doi.org/10.1016/j.cma.2018.09.002.
- Xie, Y.M. and Steven, G.P. (1996), "Evolutionary structural optimization for dynamic problems", Comput. Struct., 58(6), 1067-1073. https://doi.org/10.1016/0045-7949(95)00235-9.
- Zegard, T. and Paulino, G.H. (2016), "Bridging topology optimization and additive manufacturing", Struct. Multidisc. Optim., 53, 175-192. https://doi.org/10.1007/s00158-015-1274-4.
- Zegard, T., Hartz, C., Mazurek, A. and Baker, W.F. (2020), "Advancing building engineering through structural and topology optimization", Struct. Multidisc. Optim., 62, 915-935. https://doi.org/10.1007/s00158-020-02506-6.
- Zhiyi, Y., Kemin, Z. and Shengfang, Q. (2018), "Topology optimization of reinforced concrete structure using composite truss-like model", Struct. Eng. Mech., 67(1), 79-85. https://doi.org/10.12989/sem.2018.67.1.079.
- Zhou, K. (2016), "Topology optimization of bracing systems using a truss-like material model", Struct. Eng. Mech., 58(2), 231-242. https://doi.org/10.12989/sem.2016.58.2.231.