DOI QR코드

DOI QR Code

Study of strength and microstructure of a new sustainable concrete incorporating pozzolanic materials

  • Grzegorz Ludwik Golewski (Department of Structural Engineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology)
  • 투고 : 2022.05.26
  • 심사 : 2023.01.31
  • 발행 : 2023.05.25

초록

The aim of this paper is to present a new sustainable ternary and quaternary binder by partially replacing ordinary Portland cement (OPC) with different percentages of supplementary cementitious materials. The motivation is to reduce our dependency on OPC to reduce CO2 emission and carbon foot print. As the main substitute for the OPC, siliceous fly ash was used. Moreover, silica fume and nanosilica were also used. During examinations the main mechanical parameters of concrete composites, i.e., compressive strength (fcm) and splitting tensile strength (fctm) were assed. The microstructure of these materials was also analysed. It was found that the concrete incorporating pozzolanic materials is characterized by a well-developed structure and has high values of mechanical parameters. The quaternary concrete containing: 80% OPC, 5% FA, 10% SF, and 5% nS have shown the best results in terms of good strength parameters as well as the most favourable microstructure, whereas the worst mechanical parameters with microstructure containing microcracks at phase interfaces were characterized by concrete with more content of FA additive in the concrete mix, i.e., 15%. Nevertheless, all concretes made on quaternary binders had better parameters than the reference one. It can be stated that sustainable concrete incorporating pozzolanic materials could be good substitute of ordinary concretes.

키워드

과제정보

The research leading to these results has received funding from the MINIATURA 2 Grant, No. 2018/02/X/ST8/02726: funded by National Science Center of Poland.

참고문헌

  1. Abolhasani, A., Nazarpour, H. and Dehestani, M. (2021), "Effects of silicate impurities on fracture behavior and microstructure of calcium aluminate cement concrete", Eng. Fract. Mech., 242, 107446. https://doi.org/10.1016/j.engfracmech.2020.107446.
  2. Al-Mansour, A., Chow, C.L., Feo, L., Penna, R. and Lau, D. (2019), "Green concrete: By-products utilization and advanced approaches", Sustain., 11, 5145. https://doi.org/10.3390/su11195145.
  3. Barnat-Hunek, D., Grzegorczyk-Franczak, M., Klimek, B., Pavlikova, M. and Pavlik, Z. (2021), "Properties of multi-layer renders with fly ash and boiler slag admixtures for salt-laden masonry", Constr. Build. Mater., 278, 122366. https://doi.org/10.1016/j.conbuildmat.2021.122366.
  4. Barnat-Hunek, D., Grzegorczyk-Franczak, M., Szymanska-Chargot, M. and Lagod, G. (2019), "Effect of eco-friendly cellulose nanocrystals on physical properties of cement mortars", Polym., 11, 2088. https://doi.org/10.3390/polym11122088.
  5. Bassuoni, M.T. and Nehdi, M.L. (2007), "Resistance of self-consolidating concrete of sulfuric acid attack with consecutive pH reduction", Cement Concrete Res., 37, 1070-1084. https://doi.org/10.1016/j.cemconres.2007.04.014.
  6. Benehelal, E., Zahedi, G. and Hashim, H. (2012), "A novel design for green and economical cement manufacturing", J. Clean. Prod., 22, 60-66. https://doi.org/10.1016/j.jclepro.2011.09.019.
  7. Berto, F., Ayatollahi M. and Marsavina, L. (2017), "Mixed mode fracture", Theor. Appl. Fract. Mech., 91, 1.
  8. Biricik, H. and Sarier, N. (2014), "Comparative study of the characteristics of nanosilica-, silica fume- and fly ash-incorporated cement mortars", Mater. Res., 17, 570-582. https://doi.org/10.1590/S1516-14392014005000054
  9. Booya, E., Gorospe, K., Ghaedenia, H. and Das, S. (2019), "Durability properties of engineered pulp fibre reinforced concrete made with and without supplementary cementitious materials", Compos. B Eng., 172, 376-386. https://doi.org/10.1016/j.compositesb.2019.05.070.
  10. Boudjellal K., Bouabaz, M. and Belachia, M. (2016), "Mechanical characterization of a self-compacting plymer concrete called isobeton", Struct. Eng. Mech., 57(2) 357-367. https://doi.org/10.12989/sem.2016.57.2.357.
  11. Cai, X., He, Z., Tang, S. and Chen, X. (2016), "Abrasion erosion characteristics of concrete made with moderate heat Portland cement, fly ash and silica fume using sandblasting test", Constr. Build. Mater.. 127, 804-814. https://doi.org/10.1016/j.conbuildmat.2016.09.117.
  12. Chajec, A. (2021), "Granite powder vs. fly ash for the sustainable production of air-cured cementitious mortars", Mater., 14, 1208. https://doi.org/10.3390/ma14051208.
  13. Chen, Y., Thomas Ng, S. and Uzzal Hossain, Md. (2019), "Approach to establish carbon emission benchmarking for construction materials", Carbon Manage., 9(2), 1-18.
  14. Chen, Y.G., Guan, L.L., Zhu, S.Y. and Chen, W.J. (2021), "Foamed concrete containing fly ash: Properties and application to backfilling", Constr. Build. Mater., 273, 121685. https://doi.org/10.1016/j.conbuildmat.2020.121685.
  15. Chinnaraju, K., Subramanian, K. and Senthil Kumar, S.R.R. (2010), "Strength properties of HPC using binary, ternary and quaternary cementitious blends", Struct. Concrete, 11, 191-198. https://doi.org/10.1680/stco.2010.11.4.191
  16. Craciun, E.M. (2008), "Energy criteria for crack propagation in prestresses elastic composites", Solid. Mech, Appl., 154, 193-237. https://doi.org/10.1007/978-1-4020-8772-1_7.
  17. Craciun, E.M. (2016), "Prestressed orthotropic material containing and elliptical hole", Adv. Struct. Mater., 60, 327-336. https://doi.org/10.1007/978-981-10-0959-4_18.
  18. Dave, N., Misra, A.K., Srivastava, A. and Kaushik, S.K. (2016), "Experimental analysis of strength and durability properties of quaternary cement binder and mortar", Constr. Build. Mater., 107, 117-124. https://doi.org/10.1016/j.conbuildmat.2015.12.195.
  19. Dave, N., Misra, A.K., Srivastava, A. and Kaushik, S.K. (2017a), "Setting time and standard consistency of quaternary binders: The influence of cementitious material addition and mixing", Int. J. Sustain. Built Environ., 6, 30-36. https://doi.org/10.1016/j.ijsbe.2016.10.004.
  20. Dave, N., Misra, A.K., Srivastava, A., Sharma, A.K. and Kaushik, S.K. (2017b), "Study on quaternary micro-structure, strength, durability considering the influence of multi-factors", Constr. Build. Mater., 139, 447-457. https://doi.org/10.1016/j.conbuildmat.2017.02.068.
  21. Dave, N., Misra, A.K., Srivastava, A., Sharma, A.K. and Kaushik, S.K. (2018), "Green quaternary concrete composites: Characterization and evaluation of the mechanical properties", Struct. Concrete, 19, 1280-1289. https://doi.org/10.1002/suco.201800073.
  22. Deng, S., Shu, Y., Li, S., Tian, G., Huang, J. and Zhang, F. (2016), "Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention", J. Hazard. Mater., 301, 400-406. https://doi.org/10.1016/j.jhazmat.2015.09.032.
  23. Dhrangadharia, S., Vishwakarma, S., Kumar, A. and Saran, B. (2018), "Effect of quaternary binders systems on mechanical properties of concrete", Int. J. Eng. Sci. Res., 6, 1-10.
  24. Dragas, J., Tosic, N., Ignatovic, S. and Marinkovic, S. (2016), "Mechanical and time-dependent properties of high-volume fly ash concrete for structural use", Mag. Concrete Res., 68, 632-645. https://doi.org/10.1680/jmacr.15.00384.
  25. Duchesne, J. (2021), "Alternative supplementary cementitious materials for sustainable concrete structures: A review of characterization and properties", Waste Biomass Valoriz., 12, 1219-1236. https://doi.org/10.1007/s12649-020-01068-4.
  26. El-Chabib, H. and Ibrahim, A. (2013), "The performance of high-strength flowable concrete made with binary, ternary, or quaternary binder in hot climate", Constr. Build. Mater., 47, 245-253. https://doi.org/10.1016/j.conbuildmat.2013.05.062.
  27. Fakoor, M. and Ghoreishi, S.M.N. (2019), "Verification of a micro-mechanical approach for the investigation of progressive damage in composite laminates", Acta Mechanica, 230(1), 225-241. https://doi.org/10.1007/s00707-018-2313-1.
  28. Fakoor, M. and Manafi Farid, H. (2019), "Mixed-mode I/II fracture criterion for crack initiation assessment of composite materials", Acta Mechanica, 230 (1), 281-301. https://doi.org/10.1007/s00707-018-2308-y.
  29. Fakoor, M. and Shahsavar S. (2021), "The effect of T-stress on mixed mode I/II fracture of composite materials: Reinforcement isotropic solid model in combination with maximum shear stress theory", Int. J. Solid. Struct., 229, 111145. https://doi.org/10.1016/j.ijsolstr.2021.111145.
  30. Fakoor, M. and Shokrollahi, M.S. (2018), "A new micro-mechanical approach for investigation damage zone effects on mixed mode I/II fracture orthotropic materials", Acta Mechanica, 229(8), 3537-3556. https://doi.org/10.1007/s00707-018-2132-4.
  31. Fakoor, M., Rafiee, R. and Zare, S. (2019), "Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials ", Steel. Compos. Struct., 30(1), 1-12. https://doi.org/10.12989/scs.2019.30.1.001.
  32. Fakoor, M., Sabour, M.H. and Khansari, N.M. (2014), "A new approach for investigation of damage zone properties orthotropic materials", Eng. Solid Mech., 992(4), 283-292. https://doi.org/10.5267/j.esm.2014.8.004
  33. Figala, P., Drochytka, R., Cerny, V. and Kolisko, J. (2018), "Structure of polymer-cement composite optimized with secondary raw materials", Mater. Struct. Tech., 1, 26-31.
  34. Gao, Z., Zhang, P., Wang, J., Wang, K. and Zhang, T. (2022), "Interfacial properties of geoplymer mortar and concrete substrate: Effect of polyvinyl alcohol fiber and nano-SiO2 contents", Constr. Build. Mater., 315, 125735. https://doi.org/10.1016/j.conbuildmat.2021.125735.
  35. Gil, D.M. and Golewski, G.L. (2018a), "Effect of silica fume and siliceous fly ash addition on the fracture toughness of plain concrete in modeI", IOP Conf. Ser. Mater. Sci. Eng., 416, 012065. https://doi.org/10.1088/1757-899X/416/1/012065.
  36. Gil, D.M. and Golewski, G.L. (2018b), "Potential of siliceous fly ash and silica fume as a substitute of binder in cementitious concretes", E3S Web Conf., 49, 00030. https://doi.org/10.1051/e3sconf/20184900030.
  37. Golewski, G. and Sadowski, T. (2006), "Fracture toughness at shear (mode II) of concretes made of natural and broken aggregates", Brittle Matrix Compos., 8, 537-546. https://doi.org/10.1533/9780857093080.537.
  38. Golewski, G. L. (2018b), "An assessment of microcracks in the Interfacial Transition Zone of durable concrete composites with fly ash additives", Compos. Struct., 200, 515-520. https://doi.org/10.1016/j.compstruct.2018.05.144.
  39. Golewski, G.L. (2015), "Studies of natural radioactivity of concrete with siliceous fly ash addition", Cement Wapno Beton, 2, 106-114.
  40. Golewski, G.L. (2017a), "Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading", Struct. Eng. Mech., 62(1), 1-9. https://doi.org/10.12989/sem.2017.62.1.001.
  41. Golewski, G.L. (2017b), "Effect of fly ash addition on the fracture toughness of plain concrete at third model of fracture", J. Civil Eng. Manage., 23(5) 613-620. https://doi.org/10.3846/13923730.2016.1217923.
  42. Golewski, G.L. (2017c), "Generalized fracture toughness and compressive strength of sustainable concrete including low calcium fly ash. Characterization of fly ash microstructure", Mater., 10, 1393. https://doi.org/10.3390/ma10121393.
  43. Golewski, G.L. (2017d), "Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure", Mater. Charact., 134, 335-346. https://doi.org/10.1016/j.matchar.2017.11.008.
  44. Golewski, G.L. (2018a), "An analysis of fracture toughness in concrete with fly ash addition, considering all models of cracking", IOP Conf. Ser. Mater. Sci. Eng., 416, 012029. https://doi.org/10.1088/1757-899X/416/1/012029.
  45. Golewski, G.L. (2018c), "Effect of curing time on the fracture toughness of fly ash concrete composites", Compos. Struct., 185, 105-112. https://doi.org/10.1016/j.compstruct.2017.10.090.
  46. Golewski, G.L. (2018d), "Green concrete composite incorporating fly ash with high strength and fracture toughness", J. Clean. Prod., 172, 218-226. https://doi.org/10.1016/j.jclepro.2017.10.065.
  47. Golewski, G.L. (2018e), "Evaluation of morphology and size of cracks of the Interfacial Transition Zone (ITZ) in concrete containing fly ash (FA)", J. Hazard. Mater., 357, 298-304. https://doi.org/10.1016/j.jhazmat.2018.06.016.
  48. Golewski, G.L. (2019a), "A new principles for implementation and operation of foundations for machines: A review of recent advances", Struct. Eng. Mech., 71(3), 317-327. https://doi.org/10.12989/sem.2019.71.3.317.
  49. Golewski, G.L. (2019b), "A novel specific requirements for materials used in reinforced concrete composites subjected to dynamic loads", Compos. Struct., 223, 110939. https://doi.org/10.1016/j.compstruct.2019.110939.
  50. Golewski, G.L. (2019c), "Estimation of the optimum content of fly ash in concrete composite based on the analysis of fracture toughness tests using various measuring systems", Constr. Build. Mater., 213, 142-155. https://doi.org/10.1016/j.conbuildmat.2019.04.071.
  51. Golewski, G.L. (2019d), "Measurement of fracture mechanics parameters of concrete containing fly ash thanks to use of Digital Image Correlation (DIC) method", Measure., 135, 96-105. https://doi.org/10.1016/j.measurement.2018.11.032.
  52. Golewski, G.L. (2019e), "Physical characteristics of concrete, essential in design of fracture-resistant, dynamically loaded reinforced concrete structures", Mater. Des. Proc. Commun., 1(5), e82. https://doi.org/10.1002/mdp2.82.
  53. Golewski, G.L. (2019f), "The influence of microcrack width on the mechanical parameters in concrete with the addition of fly ash: Consideration of technological and ecological benefits", Constr. Build. Mater., 197, 849-861. https://doi.org/10.1016/j.conbuildmat.2018.08.157.
  54. Golewski, G.L. (2020a), "Changes in the fracture toughness under mode II loading of low calcium fly ash (LCFA) concrete depending on ages", Mater., 13, 5241. https://doi.org/10.3390/ma13225241.
  55. Golewski, G.L. (2020b), "Energy savings associated with the use of fly ash and nanoadditives in the cement composition", Energi., 13, 2184. https://doi.org/10.3390/en13092184.
  56. Golewski, G.L. (2020c), "On the special construction and materials conditions reducing the negative impact of vibrations on concrete structures", Mater. Today. Pros., 45, 4344-4348. https://doi.org/10.1016/j.matpr.2021.01.031.
  57. Golewski, G.L. (2021a), "Evaluation of fracture processes under shear with the use of DIC technique in fly ash concrete and accurate measurement of crack path lengths with the use of a new crack tip tracking method", Measure., 181, 109632. https://doi.org/10.1016/j.measurement.2021.109632.
  58. Golewski, G.L. (2021b), "The beneficial effect of the addition of fly ash on reduction of the size of microcracks in the ITZ of concrete composites under dynamic loading", Energi., 14, 668. https://doi.org/10.3390/en14030668.
  59. Golewski, G.L. (2021c), "Validation of the favorable quantity of fly ash in concrete and analysis of crack propagation and its length-Using the crack tip tracking (CTT) method-In the fracture toughness examinations under Mode II, through digital image correlation", Constr. Build. Mater., 296, 122362. https://doi.org/10.1016/j.conbuildmat.2021.122362.
  60. Golewski, G.L. (2021d), "Green concrete based on quaternary binders with significant reduced of CO2 emissions", Energi., 14, 4558. https://doi.org/10.3390/en14154558.
  61. Golewski, G.L. (2022a), "The specificity of shaping and execution of monolithic pocket foundations (PF) in hall buildings", Build., 12, 192. https://doi.org/10.3390/buildings12020192
  62. Golewski, G.L. (2022b), "An extensive investigations of fracture parameters of concretes based on quaternary binders (QBC) by means of the DIC technique", Constr. Build. Mater., 351, 128823. https://doi.org/10.1016/j.conbuildmat.2022.128823.
  63. Golewski, G.L. (2022b), "Comparative measurement of fracture toughness combined with visual analysis of cracks propagation using the DIC technique of concretes based on cement matrix with a highly diversified composition", Theor. Appl. Fract. Mech., 121, 103553. https://doi.org/10.1016/j.tafmec.2022.103553.
  64. Golewski, G.L. (2022c), "Fracture performance of cementitious composites based on quaternary blended cements", Mater., 15, 6023. https://doi.org/10.3390/ma15176023.
  65. Golewski, G.L. (2022d), "The role of pozzolanic activity of siliceous fly ash in the formation of the structure of sustainable cementitious composites", Sustain. Chem., 3, 520-534. https://doi.org/10.3390/suschem3040032.
  66. Golewski, G.L. (2023a), "Combined effect of coal fly ash (CFA) and nanosilica (nS) on the strength parameters and microstructural properties of eco-friendly concrete", Energi., 16, 452. https://doi.org/10.3390/en16010452.
  67. Golewski, G.L. (2023b), "The phenomenon of cracking in cement concretes and reinforced concrete structures: The mechanism of cracks formation, causes of their initiation, types and places of occurrence, and methods of detection-A review", Build., 13, 765. https://doi.org/10.3390/buildings13030765.
  68. Golewski, G.L. and Gil, D.M. (2021), "Studies of fracture toughness in concretes containing fly ash and silica fume in the first 28 days of curing", Mater., 14, 319.
  69. Golewski, G.L. and Sadowski, T. (2012), "Experimental investigation and numerical modeling fracture processes under Mode II in concrete composites containing fly-ash additive at early age", Solid State Phenomena, 188, 158-163. https://doi.org/10.4028/www.scientific.net/SSP.188.158.
  70. Golewski, G.L. and Sadowski, T. (2016a), "A study of mode III fracture toughness in young and mature concrete with fly ash additive", Solid State Phenomena, 254, 120-125. https://doi.org/10.4028/www.scientific.net/SSP.254.120.
  71. Golewski, G.L. and Sadowski, T. (2016b), "Macroscopic evaluation of fracture processes in fly ash concrete", Solid State Phenomena, 254, 188-193. https://doi.org/10.4028/www.scientific.net/SSP.254.188.
  72. Golewski, G.L. and Sadowski, T. (2017), "The fracture toughness the KIIIc of concretes with F fly ash (FA) additive", Constr. Build. Mater., 143, 444-454. https://doi.org/10.1016/j.conbuildmat.2017.03.137.
  73. Golewski, G.L. and Szostak, B. (2021a), "Strengthening the very early-age structure of cementitious composites with coal fly ash via incorporating a novel nanoadmixture based on C-S-H phase activators", Constr. Build. Mater., 312, 125426. https://doi.org/10.1016/j.conbuildmat.2021.125426.
  74. Golewski, G.L. and Szostak, B. (2021b), "Application of the C-S-H phase nucleating agents to improve the performance of sustainable concrete composites containing fly ash for use in the precast concrete industry", Mater., 14, 6514. https://doi.org/10.3390/ma14216514.
  75. Golewski, G.L. and Szostak, B. (2022), "Strength and microstructure of composites with cement matrixes modified by fly ash and active seeds of C-S-H phase", Struct. Eng. Mech., 82(4), 543-556. https://doi.org/10.12989/sem.2022.82.4.543.
  76. Guan, J., Yin, Y., Li, Y., Yao, X. and Li, L. (2022), "A design method for determining fracture toughness and tensile strength pertinent to concrete sieving curve", Eng. Fract. Mech., 271, 108596. https://doi.org/10.1016/j.engfracmech.2022.108596.
  77. Gursel, A.P., Maryman, H. and Ostertag, C. (2016), "A life-cycle approach to environmental mechanical, and durability properties of "green" concrete mixes with rice husk ash", J. Clean. Prod., 112, 823e836. https://doi.org/10.1016/j.jclepro.2015.06.029.
  78. Haeri, H. (2015), "Experimental crack analyses of concrete-like CSCBD specimens using a higher order DDM", Comput. Concrete, 16(6), 881-896. https://doi.org/10.12989/cac.2015.16.6.881.
  79. Haeri, H. and Sarfarazi V. (2016), "Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)", Comput. Concrete, 18(1), 39-51. https://doi.org/10.12989/cac.2016.18.1.039.
  80. Haeri, H., Sarfarazi, V., Zhu, Z., Nohekhan Hokmabadi, N., Moshrefifar, M.R. and Hedayat, A. (2019), "Shear behawior of non-persistent joints in concreto and gypsum specimens using combined experimental and numerical approaches", Struct. Eng. Mech., 69(2), 221-230. https://doi.org/10.12989/sem.2019.69.2.221.
  81. Hebhoub, H., Belachia, M., Berdoudi, S. and Kherraf, L. (2018), "Incorporation of marble waste as sand in formulation of self-compacting concrete", Struct. Eng. Mech., 67(1), 87-91. https://doi.org/10.12989/sem.2018.67.1.087.
  82. Hemalatha, T. and Ramaswamy A. (2017), "A review on fly ash characteristics-Towards promoting high volume utilization in developing sustainable concrete", J. Clean. Prod., 147, 546-559. https://doi.org/10.1016/j.jclepro.2017.01.114.
  83. Hu, X., Shi, C., Shi, Z., Tong, B. and Wang, D. (2017), "Early age shrinkage and heat of hydration of cement-fly ash-slag ternary blends", Constr. Build. Mater., 153, 857-865. https://doi.org/10.1016/j.conbuildmat.2017.07.138.
  84. Ikponmwosa, E.E.., Ehikhuenmen, S.O. and Irene, K.K. (2019), "Comparative study and empirical mobelling of pulverized coconut shell, periwinkle shell and palm kernel shell as a pozzolans in concrete", Acta Polytech., 59(6), 560-572. https://doi.org/10.14311/AP.2019.59.0560
  85. Imbabi, M.S., Carrigan, C. and McKenna, S. (2012), "Trends and development in green cement and concrete technology", Int. J. Sust. Bui. Environ., 1, 194-216. https://doi.org/10.1016/j.ijsbe.2013.05.001.
  86. Ji, G., Peng, X., Wang, S., Hu, C., Ran, P., Sun, K. and Zeng, L. (2021), "Influence of magnesium slag as a mineral admixture on the performance of concrete", Constr. Build. Mater., 295, 123619. https://doi.org/10.1016/j.conbuildmat.2021.123619.
  87. Jingjing, L., Fusheng, Z., Long, X., Bo, K., Xiaohui, T., Yongfeng, D. and Chengbin, Y. (2019), "Mechanisms of stabilized/solidified heavy metal contaminated soils with cement-fly ash based on electrical resistivity measurements", Measure., 141, 85-94.
  88. Joshaghani A. (2017), "The effect of trass and fly ash in minimizing alkali-carbonate reaction in concrete", Constr. Build. Mater., 150, 583-590. https://doi.org/10.1016/j.conbuildmat.2017.06.034.
  89. Ju, M., Park, K., Lee, K., Yong Ahn, K. and Sim, J. (2019), "Assessment of reliability-based FRP reinforcement ratio for concrete structures with recycled coarse aggregate", Struct. Eng. Mech., 69(4), 399-405. https://doi.org/10.12989/sem.2019.69.4.399.
  90. Karim, M.R., Zain, M.F.M., Jamil, M. and Lai, F.C. (2015), "Development of a zero-cement binder using slag, fly ash, and rice husk ash with chemical activator", Adv. Mater. Sci. Eng,. 2015, Article ID 247065. https://doi.org/10.1155/2015/247065.
  91. Kaur, I. and Singh, K. (2021), "Fractional order strain analysis in thick circular plate subjected to hyperbolic two temperature", Part. Diff. Eq. Appl Math., 4, 100130. https://doi.org/10.1016/j.padiff.2021.100130.
  92. Kaur, I., Lata, P. and Singh, K. (2020), "Effect of memory dependent derivative isotropic thermoelastic cantilever nano-beam with two temperature", Appl. Math. Model., 88, 83-105. https://doi.org/10.1016/j.apm.2020.06.045.
  93. Keihani, R., Bahadori-Jahromi, A. and Goodchild, C. (2019), "The significance of removing shear walls in existing low-rise RC frame buildings-sustainable approach", Struct. Eng. Mech., 71(5), 563-576. https://doi.org/10.12989/sem.2019.71.5.563.
  94. Khaji, Z. and Fakoor, M. (2021), "Strain energy release rate in combination with reinforcement isotropic solid model (SERIS): A new mixed-mode I/II criterion to investigate fracture behavior of orthotropic materials", Theor. Appl. Fract. Mech., 113, 102962. https://doi.org/10.1016/j.tafmec.2021.102962.
  95. Khansari, N.M., Fakoor, M. and Berto, F. (2019), "Probabilistic micromechanical damage model for mixed mode I/II fracture investigation of composite materials", Theor. Appl. Fract. Mech., 99, 177-193. https://doi.org/10.1016/j.tafmec.2018.12.003.
  96. Lata, P. and Kaur, I. (2019a), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. https://doi.org/10.12989/sem.2019.70.2.245.
  97. Lata, P. and Kaur, I. (2019b), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without Energy dissipation", Steel Compos. Struct., 32(6), 779-793. https://doi.org/10.12989/scs.2019.32.6.779.
  98. Lata, P., Kaur, I. and Singh, K. (2020), "Transversely isotropic thin circular plate with multi-dual-phase lag heat transfer", Steel Compos. Struct., 35(3), 343-351. https://doi.org/10.12989/scs.2020.35.3.343.
  99. Liang, J.F., Zhang, L.F., Yang, Y.H. and Wei, L. (2021), "Flexural behavior of partially prefabricated partially encased composite beams", Steel Compos. Struct., 38(6), 705-716. https://doi.org/10.12989/scs.2021.38.6.705.
  100. Linul, E., Marsavina, L., Linul, P.A. and Kovacik, J. (2019), "Cryogenic and high temperature compressive properties of metal foam matrix composites", Compos. Struct., 209, 490-498. https://doi.org/10.1016/j.compstruct.2018.11.006.
  101. Linul, E., Movahedi, N. and Marsavina, L. (2017), "The temperature effect on the axial quasi-static compressive behavior of ex-situ aluminum foam-filled tubes", Compos. Struct., 180, 709-722. https://doi.org/10.1016/j.compstruct.2017.08.034.
  102. Luhar, S., Cheng, T.-W. and Luhar, I. (2019), "Incorporation of natural waste from zgricultural and aquacultural farming as supplementary materials with green concrete: A review", Compos. B Eng., 175, 107076. https://doi.org/10.1016/j.compositesb.2019.107076.
  103. Manju, R. and Premalatha, J. (2014), "Binary, ternary and quaternary effect of fillers on fresh and hardened properties of self compacting concrete (SCC)", Int. J. Adv. Inf. Sci. Technol,. 21, 12-19.
  104. Manju, R. and Premalatha, J. (2016), "Binary, ternary and quaternary effect of pozzolanic binders and filler materials on the properties of self compacting concrete (SCC)", Int. J. Adv. Eng. Technol., 7, 674-683.
  105. Marin, M., Craciun, E.M. and Pop, N. (2020), "Some results in green-lindsay thermoelasticity of bodies with dipolar structure", Math., 8(4), 497. https://doi.org/10.3390/math8040497.
  106. Marsavina, L., Berto, F., Negru, R., Serban, D.A. and Linul, E. (2017), "An engineering approach to predict mixed mode fracture of PUR foams based on ASED and micromechanical modelling", Theor. Appl. Fract. Mech., 91, 148-154. https://doi.org/10.1016/j.tafmec.2017.06.008.
  107. Marsavina, L., Constantinescu, D.M., Linul, E., Voiconi, T. and Apostol, D.A. (2015), "Shear and mode II fracture of PUR foams", Eng. Fail. Anal., 58, 465-476. https://doi.org/10.1016/j.engfailanal.2015.05.021.
  108. Mehdizadeh, M., Maghshenas, A., Khosnari, M.M. (2021), "On the effect of internal friction on torsional and axial cyclic loading", Int. J. Fatig., 145, 106113. https://doi.org/10.1016/j.ijfatigue.2020.106113.
  109. Meyer, C. (2009), "The greening of the concrete industry", Cement Concrete Compos., 31, 601-605. https://doi.org/10.1016/j.cemconcomp.2008.12.010.
  110. Miraldo, S., Lopes, S., Pacheco-Torgal, F. and Lopes, A. (2021), "Advantages and shortcomings of the utilization of recycled wastes as aggregates in structural concretes", Constr. Build. Mater., 298, 123729. https://doi.org/10.1016/j.conbuildmat.2021.123729.
  111. More, S. and Londhe, R.S. (2020), "Experimental analysis of quaternary cement binder", Rec. Trend. Civil Eng. Technol., 10, 12-17.
  112. Mousavi, S.R., Afshoon, I., Bayatpour, M.A., Davarpanah, A. and Mahmoud Miri, T.Q. (2021), "Effect of waste glass and curing aging on fracture toughness of self-compacting mortars using ENDB specimen", Constr. Build. Mater., 282, 122711. https://doi.org/10.1016/j.conbuildmat.2021.122711.
  113. Murali, G., Abid, S.R., Al-Lami, K., Vatin, N.I., Dixit, S. and Fediuk, R. (2023), "Pure and mixed-mode (I/III) fracture toughness of preplaced aggregate fibrous concrete and slurry infiltrated fibre concrete and hybrid combination comprising nano carbon tubes", Constr. Build. Mater., 362, 129696. https://doi.org/10.1016/j.conbuildmat.2022.129696.
  114. Nadeem, A., Memon, S.A. and Lo, T.Y. (2014), "The performance of fly ash and metakaolin concrete at elevated temperatures", Constr. Build. Mater., 62, 67-76. https://doi.org/10.1016/j.conbuildmat.2014.02.073.
  115. Pacewska, B. and Wilinska, I. (2020), "Usage of supplementary cementitious materials: advantages and limitations. Part I. C-S-H, C-A-S-H and other products formed in different binding mixtures", J. Therm. Anal. Calorim., 142, 371-393. https://doi.org/10.1007/s10973-020-09907-1.
  116. Pacheco-Torgal, F. (2017), "High tech startup creation for Energy efficient built environment", Renew. Sustain. Energy Rev., 71, 618-629. https://doi.org/10.1016/j.rser.2016.12.088.
  117. Papadakis, V.G. (1999), "Effect of fly ash of Portland cement systems. Part I. Low-calcium fly ash", Cement Concrete Res., 29, 1727-1736. https://doi.org/10.1016/S0008-8846(99)00153-2.
  118. Papatzani, S. and Paine, K. (2019), "Optimization of low-carbon footprint quaternary and quinary (37% fly ash) cementitious nanocomposites with polycarboxylate or aqueous nanosilica particles", Adv. Mater. Sci. Eng., 2019, Article ID 5931306. https://doi.org/10.1155/2019/5931306.
  119. Park, S., Beak, J., Kim, K. and Park, Y.J. (2021), "Study on reduction effect of vibration propagation due to internal explosion using composite materials", Int. J. Concrete Struct. Mater., 15, 30. https://doi.org/10.1186/s40069-021-00467-8.
  120. Patel, N., Dave, R., Modi, S., Joshi, C., Vora, S. and Solanki, M. (2016), "Effect of binary and quaternary blends on compressive strength", Int. J. Civil Eng. Technol., 7, 242-246.
  121. Pipilikaki, P. and Katsioti, M. (2009), "Study of the hydration process of quaternary blended cements and durability of the produced mortars and concretes", Constr. Build. Mater., 23, 2246-2250. https://doi.org/10.1016/j.conbuildmat.2008.11.015.
  122. Rafiee, R., Fakoor, M. and Hesamsadat, H. (2015), "The influence of production inconsistencies on the functional failure of GRP pipes", Steel Compos. Struct., 19(6), 1369-1379. https://doi.org/10.12989/scs.2015.19.6.1369.
  123. Raheel, M., Rahman, F. and Ali, Q. (2020), "A stoichiometric approach to find optimum amount of fly ash needed in cement concrete", SN Appl. Sci., 2, 1100. https://doi.org/10.1007/s42452-020-2913-y.
  124. Rahimireskati, S., Ghabraie, K., Garcez, E.O. and Al-Ameri, R. (2021), "Improving sorptivity and electrical resistivity of concrete utilizing biomedical polymeric waste sourced from dialysis treatment", Int. J. Sustain. Eng., 14(4), 820-834. https://doi.org/10.1080/19397038.2021.1941393.
  125. Rahmani, E., Sharbatdar, M.K. and Beygi, M.H.A. (2021), "Influence of cement contents on the fracture parameters of Roller compacted concrete pavement (RCCP)", Constr. Build. Mater., 289, 123159. https://doi.org/10.1016/j.conbuildmat.2021.123159.
  126. Sarfarazi, V. and Haeri, H. (2016), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.1134/S1062739116020370.
  127. Shahsavar, S., Fakoor, M. and Berto, F. (2020), "Verification of reinforcement isotropic solid model in conjunction with maximum shear stress criterion to anticipate mixed mode I/II fracture of composite materials", Acta Mechanica, 231(12), 5105-5124. https://doi.org/10.1007/s00707-020-02810-8.
  128. Siddique, R. (2003), "Effect of fine aggregate replacement with Class F fly ash on the mechanical properties of concrete", Cement Concrete Res., 33, 539-547. https://doi.org/10.1016/S0008-8846(02)01000-1.
  129. Singh, A., Das, S. and Craciun, E.M. (2019), "Effect of thermomechanical loading on an edge crack of finite length in an infinite orthotropic strip", Mech. Compos. Mater., 55(3), 285-296. https://doi.org/10.1007/s11029-019-09812-1.
  130. Singh, A., Das, S., Altenbah, H. and Craciun, E.M. (2020), "Semi-infinite moving crack in an orthotropic strip sandwiched between two identical half planes", ZAMM, 100(2), e201900202. https://doi.org/10.1002/zamm.201900202.
  131. Smarzewski, P. (2019), "Influence of basalt-polypropylene fibers on fracture properties of high performance concrete", Compos. Struct., 209, 23-33. https://doi.org/10.1016/j.compstruct.2018.10.070.
  132. Snellings, R., Martens, G. and Elsen, J. (2012), "Supplementary cementitious materials", Rev. Miner. Geochem., 74, 211-278. https://doi.org/10.1016/j.cemconres.2010.12.001.
  133. Szczesniak, A., Zychowicz, J. and Stolarski, A. (2020), "Influence of fly ash additive on the properties of concrete with slag cement", Mater., 13, 3265. https://doi.org/10.3390/ma13153265.
  134. Szostak, B and Golewski, G.L. (2020), "Improvement of strength parameters of cement matrix with the addition of siliceous of fly ash by using nanometric C-S-H seeds", Energi., 13, 6734. https://doi.org/10.3390/en13246734.
  135. Szostak, B and Golewski, G.L. (2021), "Rheology of cement pastes with siliceous of fly ash and the C-S-H nano-admixture", Mater., 14, 3640. https://doi.org/10.3390/ma14133640.
  136. Szostak, B. and Golewski, G.L. (2018), "Effect of nano admixture of CSH on selected strength parameters of concrete including fly ash", IOP Conf. Ser. Mater. Sci. Eng., 416, 012105. https://doi.org/10.1088/1757-899X/416/1/012105.
  137. Ullah, S., Raheel, M., Khan, R. and Tariq Khan, M. (2021), "Characterization of physical & mechanical properties of asphalt concrete containing low-& high-density polyethylene waste as aggregates", Constr. Build. Mater., 301, 124127. https://doi.org/10.1016/j.conbuildmat.2021.124127.
  138. USGS. Mineral Commodity Summaries, 2001, 2011, 2020, U.S. Geological Survey: Reston, VA, USA. Available online https://www.usgs.gov/centers/nmic/mineral-commodity-summaries (accessed on 18 February 2020).
  139. UzzalHossain, Md., SunPoon, C., HongDong, Y.and Xuan, D. (2018), "Evaluation of environmental impact distribution methods for supplementary cementitious materials", Renew. Sustain. Energy Rev., 82(1), 597-608. https://doi.org/10.1016/j.rser.2017.09.048.
  140. Vishwakarma, V. and Ramachadran, D. (2018), "Green concrete mix using solid waste and nanoparticles as alternatives-A review", Constr. Build. Mater., 162, 96-103. https://doi.org/10.1016/j.conbuildmat.2017.11.174.
  141. Wang, L., Zhang, P., Golewski, G. and Guan, J. (2023), "Editorial: Fabrication and properties of concrete containing industrial waste", Front. Mater., 10, 1169715. https://doi.org/10.3389/fmats.2023.1169715.
  142. Wang, X., Gao, M., Wang, M. and Wu, C. (2021), "Chloride removal from municipal solid waste incineration fly ash using lactic acid fermentation broth", Waste Manage., 130, 23-29. https://doi.org/10.1016/j.wasman.2021.05.014.
  143. Xie, T., Yang, G., Zhao, X., Xu, J. and Fang, C. (2020), "A unified model to predicting the compressive strength of recycled aggregate concrete containing supplementary cementitious materials", J. Clean. Prod., 251, 119752. https://doi.org/10.1016/j.jclepro.2019.119752.
  144. Yang, J.M. and Kim, J.K. (2019), "Development and application of a hybrid prestressed segmental concrete grider utilizing low carbon materials", Struct. Eng. Mech., 69(4) 371-381. https://doi.org/10.12989/sem.2019.69.4.371.
  145. Yang, K.H., Jung, Y.B., Cho, M.S. and Tae, S.H. (2016), "Effect of supplementary cementitious materials on reduction of CO2 emission from concrete", J. Clean. Prod., 112, 4041-4052. https://doi.org/10.1016/j.jclepro.2014.03.018.
  146. Zhang, J., Fu, G.Y., Yu, C.J., Chen, B., Zhao, S.X. and Li, S.P. (2016), "Experimental behavior of circular flyash-concrete-filled steel tubular stub columns", Steel. Compos. Struct., 22(4), 821-835. https://doi.org/10.12989/scs.2016.22.4.821.
  147. Zhang, L., Cheng, H., Wang, X., Liu, J. and Guo, L. (2021), "Statistical damage constitutive model for high-strength concrete based on dissipation energy density", Crystal., 11, 800. https://doi.org/10.3390/cryst11070800.
  148. Zhang, M.H. (1995), "Microstructure, crack propagation, and mechanical properties of cement pastes containing high volumes of fly ashes", Cement Concrete Res., 25, 1165-1178. https://doi.org/10.1016/0008-8846(95)00109-P.
  149. Zhang, P. and Li, Q. (2013), "Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume", Compos. Part B: Eng., 45, 1587-1594. https://doi.org/10.1016/j.compositesb.2012.10.006.
  150. Zhang, P., Gao, Z., Wang, J. and Wang, K. (2021c), "Numerical modeling of rebar-matrix bond behaviors of nano-SiO2 and PVA fiber reinforced geopolymer composites", Ceram. Int., 47(8), 11727-11737. https://doi.org/10.1016/j.ceramint.2021.01.012.
  151. Zhang, P., Han, S., Golewski, G.L. and Wang, X. (2020b), "Nnoparticle-reinforced building materials with applications in civil engineering", Adv. Mech. Eng., 12, 1-4. https://doi.org/10.3390/en13092184.
  152. Zhang, P., Ji-Xiang, G., Xiao-Bing, D., Tian-Hang, Z. and Juan, W. (2016), "Fracture behavior o fly ash concrete containing silica fume", Struct. Eng. Mech., 59(2), 261-275. https://doi.org/10.12989/sem.2016.59.2.261.
  153. Zhang, P., Sha, D., Li, Q., Zhao, S. and Ling, Y. (2021a), "Effect of nano silica particles on impact resistance and durability concreto containing coal fly ash", Nanomater., 11(5), 1296. https://doi.org/10.3390/nano11051296.
  154. Zhang, P., Sha, D., Li, Q., Zhao, S. and Ling, Y. (2021b), "Statistical analysis of three-point-bending fracture failure of mortar", Constr. Build. Mater., 300, 123883. https://doi.org/10.1016/j.conbuildmat.2021.123883.
  155. Zhang, P., Wan, J., Wang, K. and Li, Q. (2017), "Influence of nano-SiO2 on properties of fresh and hardened high performance concrete: A state-of-the-art review", Constr. Build. Mater., 148, 648-658. https://doi.org/10.1016/j.conbuildmat.2017.05.059.
  156. Zhang, P., Wang, K., Wang, J., Guo, J., Hu, S. and Li, Y. (2020a), "Mechanical properties and prediction of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and nano-SiO2", Ceram. Int., 46(12), 20027-20037. https://doi.org/10.1016/j.ceramint.2020.05.074.
  157. Zhang, P., Zhang, H., Cui, G., Yue, X., Guo, J. and Hui, D. (2021d), "Effect of steel fiber on impact resistance and durability of concrete containing nano-SiO2", Nanotech. Rev., 10, 504-517. https://doi.org/10.1515/ntrev-2021-0040.
  158. Zuguan, J., Wei, S., Yunsheng, Z., Jinyang, J. and Jianzhong, L. (2007), "Interaction between sulfate and chloride solution attack of concretes with and without fly ash", Cement Concrete Res., 37, 1223-1232. https://doi.org/10.1016/j.cemconres.2007.02.016.