Acknowledgement
This work is supported by the National Natural Science Foundation of China (No. 52278158) and the Fujian Province University Industry-University Cooperation Program (No. 2022H6009). Their support is gratefully acknowledged.
References
- Abed, F., Alhamaydeh, M. and Abdalla, S. (2013), "Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs)", J. Constr. Steel Res., 80, 429-439. https://doi.org/10.1016/j.jcsr.2012.10.005.
- ACI (American Concrete Institute) (2014), Building Code Requirements for Structural Concrete, Farmington Hills, MI.
- Alostaz, Y.M. and Schneider, S.P. (1996), "Analytical behavior of connections to concrete-filled steel tubes", J. Constr. Steel Res., 40(2), 95-127. https://doi.org/10.1016/S0143-974X(96)00047-8.
- American Institute of Steel Construction (2016), Specification for Structural Steel Buildings, An American National Standard.
- Anderson, D. (2004). Eurocode 4-Design of Composite Steel and Concrete Structures-Part 1.1: General Rules and Rules for Buildings. Brussels, Belgium.
- An, L.H., Fehling-Ing, E., Lai, B., Thai, D.K. and Chau, N.V. (2019), "Experimental study on structural performance of UHPC and UHPFRC columns confined with steel tube", Eng. Struct., 187, 457-477. https://doi.org/10.1016/j.engstruct.2019.02.063.
- Architecture Institute of Japan (AIJ) (2008), Guide for the Design and Construction of Concrete-filled Steel Tube structure. Tokyo, Japan. (In Japanese)
- Attard, M.M. and Setunge, S. (1996), "Stress-strain relationship of confined and unconfined concrete", ACI Mater. J., 93(5), 432-42. https://doi.org/10.14359/9847
- Australian/New Zealand Stand (2017), Composite StructuresComposite Steel-Concrete Construction in Buildings, Australian/New Zealand Standards.
- Chen, B.C. (2016), Concrete Filled Steel Tubular Arch Bridge, China Communications Press.
- Chen, B., Lai, Z., Yan, Q., Varma, A.H. and Yu, X. (2017), "Experimental behavior and design of cft-rc short columns subjected to concentric axial loading", J. Struct. Eng., 143(11), https://doi.org/10.1061/(ASCE)ST.1943-541X.0001879.
- Chen, B.C. and Ou, Z.J. (2006), "Experimental study on influence of slenderness ratio in concrete filled steel tubular laced columns under eccentric compression", J. Build. Struct., 27(4), 73-79.
- Chen, B.C. and Ou, Z.J. (2007), "Experimental study on the ultimate load carrying capacity of four-tube concrete filled steel tubular laced columns", China Civil Eng. J., 40(6), 32-41.
- Chen, B.C. and Ou, Z.J. (2008), "Calculation method for the ultimate load carrying capacity of concrete-filled steel tubular lattice columns", China Civil Eng. J., 41(1), 55-63.
- Chen, B.C. and Song, F.C. (2009), "Experimental study on ultimate load-carrying capacities of concrete filled steel tubular battened columns", J. Build. Struct., 30(3), 36-44.
- Chen, B.W., He, R., Tan, J.G. and Oyang, Y. (2011), "Experimental research on four-tube concrete-filled steel tubular laced columns", Adv. Mater. Res., 311-313, 2204-2207. https://doi.org/10.4028/www.scientific.net/AMR.311-313.2204.
- Code of China (2010a), Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature, Beijing.
- Code of China (2010b), Standard for Test Method of Mechanical Properties on Ordinary Concrete, Beijing.
- Code of China (2014), Technical Code of Concrete Filled Steel Tubular Structures, Beijing.
- Code of China (2015), Reactive Powder Concrete, Beijing.
- Ekmekyapar, T. and Al-Eliwi, B.J. (2016), "Experimental behaviour of circular concrete filled steel tube columns and design specifications", Thin Wall. Struct. 105, 220-230. https://doi.org/10.1016/j.tws.2016.04.004.
- Fehling, E., Schmidt, M., Walraven, J., Leutbecher, T. and Frohlich, S. (2014), Ultra-High Performance Concrete UHPC. Berlin: Ernst & Sohn.
- Ferrotto, M.F., Fenu, L., Xue, J.Q., Briseghella, B., Chen, B.C. and Cavaleri, L. (2022), "Simplified equivalent finite element modelling of concrete-filled steel tubular K-joints with and without studs", Eng. Struct., 2022. 114634. https://doi.org/10.1016/j.engstruct.2022.114634.
- Georgios, Giakoumelis. and Dennis, Lam. (2004), "Axial capacity of circular concrete-filled tube columns-science direct", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
- Gupta, P.K., Sarda, S.M. and Kumar, M.S. (2007), "Experimental and computational study of concrete filled steel tubular columns under axial loads", J. Constr. Steel Res., 63(2), 182-193. https://doi.org/10.1016/j.jcsr.2006.04.004.
- Han, L.H. (2002), "Tests on stub columns of concrete-filled RHS sections", J. Constr. Steel Res. 58(3), 53-72. https://doi.org/10.1016/S0143-974X(01)00059-1.
- Han, L.H. (2016), Concrete-Filled Steel Tubular StructuresTheory and Practice, China Science & Technology Press.
- Han, L.H., He, S.H., Zheng, L.Q. and Tao, Z. (2012), "Curved concrete filled steel tubular (CCFST) built-up members under axial compression: experiments", J. Constr. Steel Res., 74, 63-75. https://doi.org/10.1016/j.jcsr.2012.02.008.
- Han, L.H. and Yao, G.H. (2004), "Experimental behaviour of thinwalled hollow structural steel (HSS) columns filled with selfconsolidating concrete (SCC)", Thin Wall. Struct., 42(9), 1357-1377. https://doi.org/10.1016/j.tws.2004.03.016.
- Han, L.H., Yao, G.H. and Zhao, X.L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Constr. Steel Res., 61(9), 1241-1269. https://doi.org/10.1016/j.jcsr.2005.01.004.
- Han, L.H., Yao, G.H., Chen, Z.B. and Yu, Q. (2005), "Experimental behaviours of steel tube confined concrete (STCC) columns", Steel Compos. Struct., 5(6), 459-84. https://doi.org/10.12989/scs.2005.5.6.459
- Huang, F.Y., Yu, G., Chen, B.C. and Li, J.Z. (2014), "Experiment study on influence of initial stress in concrete filled steel tubular latticed columns under axial load", Appl. Mech. Mater., 518, 170-177. https://doi.org/10.4028/www.scientific.net/AMM.518.170.
- Jiang, L.Z., Zhou, W.B., Wu, Z.Y. and Zhang, J.J. (2010), "Experimental study and theoretical analysis on the ultimate load carrying capacity of four-tube concrete filled steel tubular lattice columns", China Civil Eng. J., 43(9), 55-62.
- Johansson, M. (2002), "The efficiency of passive confinement in CFT columns. Steel Compos. Struct., 2(5). 379-396. https://doi.org/10.12989/scs.2002.2.2.379.
- Johansson, M. (2002), Composite Action and Confinement Effects in Tubular Steel-Concrete Columns. Ph.D. Dissertation, Chalmers University of Technology, Goteborg, Sweden.
- Kang, L., Leon, R.T. and Lu, X. (2015), "Shear strength analyses of internal diaphragm connections to CFT columns", Steel Compos Struct., 18(5), 1083-1101. https://doi.org/10.12989/scs.2015.18.5.1083.
- Lai, M.H. and Ho, J.C.M. (2016), "A theoretical axial stress-strain model for circular concrete-filled-steel-tube columns", Eng. Struct., 125, 124-143. https://doi.org/10.1016/j.engstruct.2016.06.048.
- Li, L., Zhao, H.K., Shu. and G.P. (2013), "Seismic design of especially irregular tall building", Build. Struct., 43, 488-492.
- Hoang, A.L. and Fehling, E. (2017), "A review and analysis of UHPC filled steel tube columns", Struct. Eng. Mech., 61(2), 417-430. https://doi.org/10.12989/sem.2017.62.4.417.
- Nie, J.G. and Liao, Y.B. (2009), "Experiments of four-legged concrete filled steel tubular laced columns subjected to axial loads", J. Tsing hua Univ. (Sci & Tech), 49(12), 1919-1924.
- Oliveira, W.L.A.D., Nardin, S.D., Ana Lucia H. de Cresce El Debs, and Debs, M.K.E. (2009), "Influence of concrete strength and length/diameter on the axial capacity of CFT columns", J. Constr. Steel Res., 65(12), 2103-2110. https://doi.org/10.1016/j.jcsr.2009.07.004.
- Ou, Z., Lin, J., Chen, S. and Lin, W. (2017), "Experimental research on seismic performance of four-element variable crosssectional concrete filled steel tubular laced columns", Mater. Sci. Eng., 250(18), 12-39. https://doi.org/10.1088/1757-899X/250/1/012039.
- Ou, Z.J., Yan, Q.L., Xue, J.Y. and Chen, B.C. (2016), "The ultimate load carrying capacity of variable cross-sectional concrete filled steel tubular laced columns on axial load", J. Chongqing Univ.
- O'Shea, M.D. and Bridge, R.Q. (2000), "Design of circular thinwalled concrete filled steel tubes", J. Struct. Eng., 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295).
- Saisho, M., Abe, T. and Nakaya, K. (1999), "Ultimate bending strength of high-strength concrete filled steel tube column", J. Struct. Constr. Eng., 523, 133-140. https://doi.org/10.3130/aijs.64.133_4
- Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180).
- Tan, K. (2005), "Mechanical properties of high-strength concrete filled steel tubular columns part 1: Concentrically loaded short columns", J. SWUST. 20(3), 22-27.
- Toshiaki, F., Akiyoshi, M., Isao, N., Eiichi, I., Makoto, K. and Yoshinari, T. (1997), "Axial compression behavior of concrete filled steel tubular stub columns using high strength materials", J. Struct. Constr. Eng. 62(498), 161-168. https://doi.org/10.3130/aijs.62.161
- Uy, B., Tao, Z. and Han, L.H. (2011), "Behaviour of short and slender concrete-filled stainless steel tubular columns", J. Constr. Steel Res., 67(3), 360-378. https://doi.org/10.1016/j.jcsr.2010.10.004.
- Wang, H., Jiang, L. and Xiang, P. (2018), "Improving the durability of the optical fiber sensor based on strain transfer analysis", Optical Fiber Technology, 42, 97-104. https://doi.org/10.1016/j.yofte.2018.02.004.
- Wang, Y. and Zhang, S. (2009), "Shear resistant behavior of axially loaded high-strength concrete-filled steel tubular stub columns", J. Build. Struct., 30(2), 114-124.
- Wang, Y., Chen, P., Liu, C. and Zhang, Y. (2017), "Size effect of circular concrete-filled steel tubular short columns subjected to axial compression", Thin Wall. Struct., 120, 397-407. https://doi.org/10.1016/j.tws.2017.09.010.
- Xue, J., Briseghella, B., Huang, F., Nuti, C. and Chen, B. (2020), "Review of ultra-high performance concrete and its application in bridge engineering", Constr. Build. Mater., 260, 119844. https://doi.org/10.1016/j.conbuildmat.2020.119844.
- Yadav, R., Yuan, H., Chen, B. and Lian, Z. (2018), "Experimental study on seismic performance of latticed CFST-RC column connected with RC web. Thin Wall. Struct., https://doi.org/10.1016/j.tws.2017.11.043.
- Yuan, H.H., Wu, Q.X., Chen, B.C. and Lu, Y.H. (2016), "A seismic performance test and FEM analysis of uniform sectional CFST lattice column with flat lacing tubes", 33, 226-235. https://doi.org/10.6052/j.issn.1000-4750.2015.05.0373.
- Yu, Z., Ding, F. and Lin, S. (2002), "Researches on behavior of high-performance concrete filled tubular steel short columns", J. Build. Struct., 23(2), 41-47.
- Zhou, J., Pan, J. and Leung, C. (2015), "Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression", J. Mater. Civil Eng., 27(1), 04014111. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001034.
- Zhu, L., Ma, L., Bai, Y., Li, S., Song, Q., Wei, Y. and Sha, X. (2016), "Large diameter concrete-filled high strength steel tubular stub columns under compression", Thin Wall. Struct., 108, 12-19. https://doi.org/10.1016/j.tws.2016.08.004.