DOI QR코드

DOI QR Code

Axial compressed UHPC plate-concrete filled steel tubular composite short columns, Part I: Bearing capacity

  • Jiangang Wei (College of Civil Engineering, Fuzhou Univ.) ;
  • Zhitao Xie (College of Civil Engineering, Fuzhou Univ.) ;
  • Wei Zhang (College of Civil Engineering, Fujian Univ. of Technology) ;
  • Yan Yang (College of Civil Engineering, Fuzhou Univ.) ;
  • Xia Luo (College of Civil Engineering, Fujian Univ. of Technology) ;
  • Baochun Chen (College of Civil Engineering, Fuzhou Univ.)
  • Received : 2022.10.09
  • Accepted : 2023.04.20
  • Published : 2023.05.10

Abstract

An experimental study on six axially-loaded composite short columns with different thicknesses of steel tube and that of the concrete plate was carried out. Compared to the mechanical behavior of component specimens under axially compressed, the failure modes, compression deformation, and strain process were obtained. The two main parameters that have a significant enhancement to cross-sectional strength were also analyzed. The failure of an axially loaded UHPC-CFST short column is due to the crushing of the UHPC plate, while the CFST member does reach its maximum resistance. A reduction coefficient K'c, related to the confinement coefficient, is introduced to account for the contribution of CFST members to the ultimate load-carrying capacity of the UHPC-CFST composite short columns. Based on the regression analysis of the relationship between the confinement index ξ and the value of fcc/fc, a unified formula for estimating the axial compressive strength of CFST short columns was proposed, combined with the experimental results in this research, and an equation for reliably predicting the strength of UHPC-CFST composite short columns under axial compression were also proposed.

Keywords

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 52278158) and the Fujian Province University Industry-University Cooperation Program (No. 2022H6009). Their support is gratefully acknowledged.

References

  1. Abed, F., Alhamaydeh, M. and Abdalla, S. (2013), "Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs)", J. Constr. Steel Res., 80, 429-439. https://doi.org/10.1016/j.jcsr.2012.10.005. 
  2. ACI (American Concrete Institute) (2014), Building Code Requirements for Structural Concrete, Farmington Hills, MI. 
  3. Alostaz, Y.M. and Schneider, S.P. (1996), "Analytical behavior of connections to concrete-filled steel tubes", J. Constr. Steel Res., 40(2), 95-127. https://doi.org/10.1016/S0143-974X(96)00047-8. 
  4. American Institute of Steel Construction (2016), Specification for Structural Steel Buildings, An American National Standard. 
  5. Anderson, D. (2004). Eurocode 4-Design of Composite Steel and Concrete Structures-Part 1.1: General Rules and Rules for Buildings. Brussels, Belgium. 
  6. An, L.H., Fehling-Ing, E., Lai, B., Thai, D.K. and Chau, N.V. (2019), "Experimental study on structural performance of UHPC and UHPFRC columns confined with steel tube", Eng. Struct., 187, 457-477. https://doi.org/10.1016/j.engstruct.2019.02.063. 
  7. Architecture Institute of Japan (AIJ) (2008), Guide for the Design and Construction of Concrete-filled Steel Tube structure. Tokyo, Japan. (In Japanese) 
  8. Attard, M.M. and Setunge, S. (1996), "Stress-strain relationship of confined and unconfined concrete", ACI Mater. J., 93(5), 432-42.  https://doi.org/10.14359/9847
  9. Australian/New Zealand Stand (2017), Composite StructuresComposite Steel-Concrete Construction in Buildings, Australian/New Zealand Standards. 
  10. Chen, B.C. (2016), Concrete Filled Steel Tubular Arch Bridge, China Communications Press. 
  11. Chen, B., Lai, Z., Yan, Q., Varma, A.H. and Yu, X. (2017), "Experimental behavior and design of cft-rc short columns subjected to concentric axial loading", J. Struct. Eng., 143(11), https://doi.org/10.1061/(ASCE)ST.1943-541X.0001879. 
  12. Chen, B.C. and Ou, Z.J. (2006), "Experimental study on influence of slenderness ratio in concrete filled steel tubular laced columns under eccentric compression", J. Build. Struct., 27(4), 73-79. 
  13. Chen, B.C. and Ou, Z.J. (2007), "Experimental study on the ultimate load carrying capacity of four-tube concrete filled steel tubular laced columns", China Civil Eng. J., 40(6), 32-41. 
  14. Chen, B.C. and Ou, Z.J. (2008), "Calculation method for the ultimate load carrying capacity of concrete-filled steel tubular lattice columns", China Civil Eng. J., 41(1), 55-63. 
  15. Chen, B.C. and Song, F.C. (2009), "Experimental study on ultimate load-carrying capacities of concrete filled steel tubular battened columns", J. Build. Struct., 30(3), 36-44. 
  16. Chen, B.W., He, R., Tan, J.G. and Oyang, Y. (2011), "Experimental research on four-tube concrete-filled steel tubular laced columns", Adv. Mater. Res., 311-313, 2204-2207. https://doi.org/10.4028/www.scientific.net/AMR.311-313.2204. 
  17. Code of China (2010a), Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature, Beijing.
  18. Code of China (2010b), Standard for Test Method of Mechanical Properties on Ordinary Concrete, Beijing.
  19. Code of China (2014), Technical Code of Concrete Filled Steel Tubular Structures, Beijing.
  20. Code of China (2015), Reactive Powder Concrete, Beijing. 
  21. Ekmekyapar, T. and Al-Eliwi, B.J. (2016), "Experimental behaviour of circular concrete filled steel tube columns and design specifications", Thin Wall. Struct. 105, 220-230. https://doi.org/10.1016/j.tws.2016.04.004. 
  22. Fehling, E., Schmidt, M., Walraven, J., Leutbecher, T. and Frohlich, S. (2014), Ultra-High Performance Concrete UHPC. Berlin: Ernst & Sohn. 
  23. Ferrotto, M.F., Fenu, L., Xue, J.Q., Briseghella, B., Chen, B.C. and Cavaleri, L. (2022), "Simplified equivalent finite element modelling of concrete-filled steel tubular K-joints with and without studs", Eng. Struct., 2022. 114634. https://doi.org/10.1016/j.engstruct.2022.114634. 
  24. Georgios, Giakoumelis. and Dennis, Lam. (2004), "Axial capacity of circular concrete-filled tube columns-science direct", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001. 
  25. Gupta, P.K., Sarda, S.M. and Kumar, M.S. (2007), "Experimental and computational study of concrete filled steel tubular columns under axial loads", J. Constr. Steel Res., 63(2), 182-193. https://doi.org/10.1016/j.jcsr.2006.04.004. 
  26. Han, L.H. (2002), "Tests on stub columns of concrete-filled RHS sections", J. Constr. Steel Res. 58(3), 53-72. https://doi.org/10.1016/S0143-974X(01)00059-1. 
  27. Han, L.H. (2016), Concrete-Filled Steel Tubular StructuresTheory and Practice, China Science & Technology Press. 
  28. Han, L.H., He, S.H., Zheng, L.Q. and Tao, Z. (2012), "Curved concrete filled steel tubular (CCFST) built-up members under axial compression: experiments", J. Constr. Steel Res., 74, 63-75. https://doi.org/10.1016/j.jcsr.2012.02.008. 
  29. Han, L.H. and Yao, G.H. (2004), "Experimental behaviour of thinwalled hollow structural steel (HSS) columns filled with selfconsolidating concrete (SCC)", Thin Wall. Struct., 42(9), 1357-1377. https://doi.org/10.1016/j.tws.2004.03.016. 
  30. Han, L.H., Yao, G.H. and Zhao, X.L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Constr. Steel Res., 61(9), 1241-1269. https://doi.org/10.1016/j.jcsr.2005.01.004. 
  31. Han, L.H., Yao, G.H., Chen, Z.B. and Yu, Q. (2005), "Experimental behaviours of steel tube confined concrete (STCC) columns", Steel Compos. Struct., 5(6), 459-84.  https://doi.org/10.12989/scs.2005.5.6.459
  32. Huang, F.Y., Yu, G., Chen, B.C. and Li, J.Z. (2014), "Experiment study on influence of initial stress in concrete filled steel tubular latticed columns under axial load", Appl. Mech. Mater., 518, 170-177. https://doi.org/10.4028/www.scientific.net/AMM.518.170. 
  33. Jiang, L.Z., Zhou, W.B., Wu, Z.Y. and Zhang, J.J. (2010), "Experimental study and theoretical analysis on the ultimate load carrying capacity of four-tube concrete filled steel tubular lattice columns", China Civil Eng. J., 43(9), 55-62. 
  34. Johansson, M. (2002), "The efficiency of passive confinement in CFT columns. Steel Compos. Struct., 2(5). 379-396. https://doi.org/10.12989/scs.2002.2.2.379. 
  35. Johansson, M. (2002), Composite Action and Confinement Effects in Tubular Steel-Concrete Columns. Ph.D. Dissertation, Chalmers University of Technology, Goteborg, Sweden. 
  36. Kang, L., Leon, R.T. and Lu, X. (2015), "Shear strength analyses of internal diaphragm connections to CFT columns", Steel Compos Struct., 18(5), 1083-1101. https://doi.org/10.12989/scs.2015.18.5.1083. 
  37. Lai, M.H. and Ho, J.C.M. (2016), "A theoretical axial stress-strain model for circular concrete-filled-steel-tube columns", Eng. Struct., 125, 124-143. https://doi.org/10.1016/j.engstruct.2016.06.048. 
  38. Li, L., Zhao, H.K., Shu. and G.P. (2013), "Seismic design of especially irregular tall building", Build. Struct., 43, 488-492. 
  39. Hoang, A.L. and Fehling, E. (2017), "A review and analysis of UHPC filled steel tube columns", Struct. Eng. Mech., 61(2), 417-430. https://doi.org/10.12989/sem.2017.62.4.417. 
  40. Nie, J.G. and Liao, Y.B. (2009), "Experiments of four-legged concrete filled steel tubular laced columns subjected to axial loads", J. Tsing hua Univ. (Sci & Tech), 49(12), 1919-1924. 
  41. Oliveira, W.L.A.D., Nardin, S.D., Ana Lucia H. de Cresce El Debs, and Debs, M.K.E. (2009), "Influence of concrete strength and length/diameter on the axial capacity of CFT columns", J. Constr. Steel Res., 65(12), 2103-2110. https://doi.org/10.1016/j.jcsr.2009.07.004. 
  42. Ou, Z., Lin, J., Chen, S. and Lin, W. (2017), "Experimental research on seismic performance of four-element variable crosssectional concrete filled steel tubular laced columns", Mater. Sci. Eng., 250(18), 12-39. https://doi.org/10.1088/1757-899X/250/1/012039. 
  43. Ou, Z.J., Yan, Q.L., Xue, J.Y. and Chen, B.C. (2016), "The ultimate load carrying capacity of variable cross-sectional concrete filled steel tubular laced columns on axial load", J. Chongqing Univ. 
  44. O'Shea, M.D. and Bridge, R.Q. (2000), "Design of circular thinwalled concrete filled steel tubes", J. Struct. Eng., 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295). 
  45. Saisho, M., Abe, T. and Nakaya, K. (1999), "Ultimate bending strength of high-strength concrete filled steel tube column", J. Struct. Constr. Eng., 523, 133-140.  https://doi.org/10.3130/aijs.64.133_4
  46. Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180). 
  47. Tan, K. (2005), "Mechanical properties of high-strength concrete filled steel tubular columns part 1: Concentrically loaded short columns", J. SWUST. 20(3), 22-27. 
  48. Toshiaki, F., Akiyoshi, M., Isao, N., Eiichi, I., Makoto, K. and Yoshinari, T. (1997), "Axial compression behavior of concrete filled steel tubular stub columns using high strength materials", J. Struct. Constr. Eng. 62(498), 161-168.  https://doi.org/10.3130/aijs.62.161
  49. Uy, B., Tao, Z. and Han, L.H. (2011), "Behaviour of short and slender concrete-filled stainless steel tubular columns", J. Constr. Steel Res., 67(3), 360-378. https://doi.org/10.1016/j.jcsr.2010.10.004. 
  50. Wang, H., Jiang, L. and Xiang, P. (2018), "Improving the durability of the optical fiber sensor based on strain transfer analysis", Optical Fiber Technology, 42, 97-104. https://doi.org/10.1016/j.yofte.2018.02.004. 
  51. Wang, Y. and Zhang, S. (2009), "Shear resistant behavior of axially loaded high-strength concrete-filled steel tubular stub columns", J. Build. Struct., 30(2), 114-124. 
  52. Wang, Y., Chen, P., Liu, C. and Zhang, Y. (2017), "Size effect of circular concrete-filled steel tubular short columns subjected to axial compression", Thin Wall. Struct., 120, 397-407. https://doi.org/10.1016/j.tws.2017.09.010. 
  53. Xue, J., Briseghella, B., Huang, F., Nuti, C. and Chen, B. (2020), "Review of ultra-high performance concrete and its application in bridge engineering", Constr. Build. Mater., 260, 119844. https://doi.org/10.1016/j.conbuildmat.2020.119844. 
  54. Yadav, R., Yuan, H., Chen, B. and Lian, Z. (2018), "Experimental study on seismic performance of latticed CFST-RC column connected with RC web. Thin Wall. Struct., https://doi.org/10.1016/j.tws.2017.11.043. 
  55. Yuan, H.H., Wu, Q.X., Chen, B.C. and Lu, Y.H. (2016), "A seismic performance test and FEM analysis of uniform sectional CFST lattice column with flat lacing tubes", 33, 226-235. https://doi.org/10.6052/j.issn.1000-4750.2015.05.0373. 
  56. Yu, Z., Ding, F. and Lin, S. (2002), "Researches on behavior of high-performance concrete filled tubular steel short columns", J. Build. Struct., 23(2), 41-47. 
  57. Zhou, J., Pan, J. and Leung, C. (2015), "Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression", J. Mater. Civil Eng., 27(1), 04014111. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001034. 
  58. Zhu, L., Ma, L., Bai, Y., Li, S., Song, Q., Wei, Y. and Sha, X. (2016), "Large diameter concrete-filled high strength steel tubular stub columns under compression", Thin Wall. Struct., 108, 12-19. https://doi.org/10.1016/j.tws.2016.08.004.