DOI QR코드

DOI QR Code

Strain interaction of steel stirrup and EB-FRP web strip in shear-strengthened semi-deep concrete beams

  • Javad Mokari Rahmdel (Faculty of Civil Engineering, Urmia University of Technology) ;
  • Erfan Shafei (Faculty of Civil Engineering, Urmia University of Technology)
  • 투고 : 2022.10.25
  • 심사 : 2023.04.13
  • 발행 : 2023.05.10

초록

Conventional reinforced concrete design codes assume ideal strain evolution in semi-deep beams with externally bonded fiber-reinforced polymer (EB-FRP) web strips. However, there is a strain interaction between internal stirrups and web strips, leading to a notable difference between code-based and experimental shear strengths. Current study provides an experiment-verified detailed numerical framework to assess the potential strain interaction under quasi-static monotonic load. Based on the observations, steel stirrups are effective only for low EB-FRP amounts and the over-strengthening of semi-deep beams prevents the stirrups from yielding, reducing its shear strength contribution. A notable difference is detected between the code-based and the study-based EB-FRP strain values, which is a function of the normalized FRP stress parameter. Semi-analytical relations are proposed to estimate the effective strain and stress of the components considering the potential strain interaction. For the sake of simplification, a linearized correction factor is proposed for the EB-FRP web strip strain, assuming its restraining effect as constant for all steel stirrup amounts.

키워드

참고문헌

  1. ACI (2019), Building Code Requirements for Structural Concrete (ACI 31819) and Commentary.
  2. Aksoylu, C. (2021), "Experimental analysis of shear deficient reinforced concrete beams strengthened by glass fiber strip composites and mechanical stitches", Steel Compos. Struct., 40(2), 267-285, https://doi.org/10.12989/scs.2021.40.2.267.
  3. Altin, S., Ozgur, A., Topta, T. and Kara, M.E. (2011), "Retrofitting of shear damaged RC beams using CFRP strips", Steel Compos. Struct., 11(3), 207-223. https://doi.org/10.12989/scs.2011.11.3.207.
  4. Chalioris, C.E., Zapris, A.G. and Karayannis, C.G. (2020), "Ujacketing applications of fiber-reinforced polymers in reinforced concrete T-beams against shear-Tests and design", Fibers, 8(2), 13. https://doi.org/10.3390/fib8020013.
  5. Chen, G., Li, S., Fernando, D., Liu, P. and Chen, J. (2017), "Fullrange FRP failure behavior in RC beams shear-strengthened with FRP wraps", Int. J. Solids Struct., 125, 1-21 https://doi.org/10.1016/j.ijsolstr.2017.07.019.
  6. Colajanni, P., Guarino, V. and Pagnotta, S. (2021), "Shear capacity model with variable orientation of concrete stress field for RC beams strengthened by FRP with different inclinations", J. Compos. Constr., 25(4), 04021037. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001145.
  7. El-Shihy, A., Fawzy, H., Mustafa, S. and El-Zohairy, A. (2010), "Experimental and numerical analysis of composite beams strengthened by CFRP laminates in hogging moment region", Steel Compos. Struct., 10(3), 281-295. https://doi.org/10.12989/scs.2010.10.3.281.
  8. Eligehausen, R., Mallee, R. and Silva, J.F. (2006), Anchorage in Concrete Construction, John Wiley & Sons.
  9. Gemi, L., Alsdudi, M., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan, M.H. (2022), "Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams", Steel Compos. Struct., https://doi.org/10.12989/scs.2022.43.6.735.
  10. Grassl, P., Xenos, D., Nystrom, U., Rempling, R. and Gylltoft, K. (2013), "CDPM2: A damage-plasticity approach to modelling the failure of concrete", Int. J. Solids Struct, 50(24), 3805-3816, https://doi.org/10.1016/j.ijsolstr.2013.07.008.
  11. Hadji, L., Daouadji, T.H., Meziane, M. and Bedia, E.A. (2016), "Analyze of the interfacial stress in reinforced concrete beams strengthened with externally bonded CFRP plate", Steel Compos. Struct., 20(2), 413-429. https://doi.org/10.12989/scs.2016.20.2.413.
  12. Hallquist, J. (2010), LSDYNA Keyword User Manual 971, Livermore Software Technology Corporation.
  13. Kim, S.H. and Aboutaha, R.S. (2004), "Ductility of carbon fiberreinforced polymer (CFRP) strengthened reinforced concrete beams: Experimental investigation", Steel Compos. Struct. 4(5), 333-353, https://doi.org/10.12989/scs.2004.4.5.333.
  14. Li, W., Hu, C., Pan, Z., Peng, W., Yang, Y. and Xing, F. (2018), "A proposed strengthening model considering interaction of concrete-stirrup-FRP system for RC beams shear-strengthened with EBFRP sheets", J. Reinf. Plast. Comp., 37(10), 685-700, https://doi.org/10.1177/0731684418760204.
  15. Li, W. and Leung, C.K. (2017), "Effect of shear span-depth ratio on mechanical performance of RC beams strengthened in shear with U-wrapping FRP strips", Compos. Struct., 177, 141-157, https://doi.org/10.1016/j.compstruct.2017.06.059.
  16. Matzenmiller, A., Gerlach, S. and Fiolka, M. (2010), "A critical analysis of interface constitutive models for the simulation of delamination in composites and failure of adhesive bonds", J. Mech. Mater. Struct., 5(2), 185-211. http://dx.doi.org/10.2140/jomms.2010.5.185.
  17. Mosley, W.H., Hulse, R. and Bungey, J.H. (2012), Reinf. Concr. Des. Eurocode 2, Macmillan International Higher Education.
  18. Oller, E., Kotynia, R. and Mari, A. (2021), "Assessment of the existing models to evaluate the shear strength contribution of externally bonded FRP shear reinforcements", Compos. Struct., 266, 113641, https://doi.org/10.1016/j.compstruct.2021.113641.
  19. Panda, K., Bhattacharyya, S. and Barai, S. (2012), "Shear behavior of RC T-beams strengthened with U-wrapped GFRP sheet", Steel Compos. Struct., 12(2), 149-166. https://doi.org/10.12989/scs.2012.12.2.149.
  20. Standard, B. (2019), Eurocode 2: Design of Concrete Structures, Part, 1(1), 230.
  21. Uriayer, F.A. and Alam, M. (2015), "Steel-CFRP composite and their shear response as vertical stirrup in beams", Steel Compos. Struct. 18(5), 1145-1160. http://dx.doi.org/10.12989/scs.2015.18.5.1145.
  22. Vora, T.P. and Shah, B.J. (2016), "Experimental investigation on shear capacity of RC beams with GFRP rebar & stirrups", Steel Compos. Struct. 21(6), 1265-1285. http://dx.doi.org/10.12989/scs.2016.21.6.1265.
  23. Wang, Q., Li, T., Zhu, H., Su, W. and Hu, X. (2020), "Bond enhancement for NSM FRP bars in concrete using different anchorage systems", Constr. Build. Mater., 246, 118316, https://doi.org/10.1016/j.conbuildmat.2020.118316.
  24. Xenos, D. and Grassl, P. (2016), "Modelling the failure of reinforced concrete with nonlocal and crack band approaches using the damage-plasticity model CDPM2", Finite Elem. Anal. Des., 117, 11-20, https://doi.org/10.1016/j.finel.2016.04.002.