Acknowledgement
This research was supported by and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C1003776) and 2021R1I1A1A01054901.
References
- Banh, T.T. and Lee, D.K. (2018), "Multi-material topology optimization design for continuum structures with crack patterns", Compos. Struct., 186, 193-209. https://doi.org/10.1016/j.compstruct.2017.11.088.
- Banh, T.T. and Lee, D.K. (2019), "Topology optimization of multidirectional variable thickness thin plate with multiple materials", Struct Multidisc Optim, 59, 1503-1520. https://doi.org/10.1007/s00158-018-2143-8.
- Banh, T.T., Luu, G.N. and Lee D.K. (2021), "A non-homogeneous multi-material topology optimization approach for functionally graded structures with cracks", Compos. Struct., 273(24), 114-230. https://doi.org/10.1016/j.compstruct.2021.114230.
- Banh, T.T., Nguyen, Q.X. and Lee, D.K. (2020), "Multiphase material topology optimization of Mindlin-Reissner plate with nonlinear variable thickness and Winkler foundation", Steel Compos. Struct., 35(1), 129-145. https://doi.org/10.12989/scs.2020.35.1.129.
- Bathe, K.J., Dvorkin, E.N, (1985), "A four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation", Int. J. Num. Methods Eng, 21, 367-383. https://doi.org/10.1002/nme.1620210213.
- Bendsoe, M.P and Sigmund, O. (2013), Topology Optimization: Theory, Methods, and Applications, Springer Science Business Media.
- Bletzinger, K.U., Bischoff, M. and Ramm, E. (2003), "A unified approach for shearlocking-free triangular and rectangular shell finite elements", Compos. Struct., 75(3), 321-334. https://doi.org/10.1016/S0045-7949(99)00140-6.
- Chau, K.N., Chau, K.N., Ngo, T., Hackl, K. and Xuan, H.N. (2018), ''A polytree-based adaptive polygonal finite element method for multi-material topology optimization'', Comput. Meth. Appl. Mech. Eng., 332, 712-739. https://doi.org/10.1016/j.cma.2017.07.035.
- Doan, Q.H and Lee, D.K. (2017), "Optimum topology design of multi-material structures with non-spurious buckling constraints", Adv. Eng. Softw., 114, 110-120. https://doi.org/10.1016/j.advengsoft.2017.06.002.
- Hoang, V.N. and Xuan, H.N. (2020), ''Extruded-geometric-component-based 3D topology optimization", Comput. Meth. Appl. Mech. Eng., 371, 113293. https://doi.org/10.1016/j.cma.2020.113293.
- Hoang, V.N., Pham, T., Ho, D. and Xuan, H.N. (2022), ''Robust multiscale design of incompressible multi-materials under loading uncertainties'', Eng. Comput., 38, 875-890. https://doi.org/10.1007/s00366-021-01372-0.
- Hoang, V.N., Pham, T., Tangaramvong, S., Bordas, S.P.A and Xuan, H.N. (2021), ''Robust adaptive topology optimization of porous infills under loading uncertainties'', Struct. Multidiscipl. Optim., 63, 2253-2266. https://doi.org/10.1007/s00158-020-02800-3.
- Hughes, T.J.R., Cohen, M. and Haroun, M. (1978), "Reduced and selective integration techniques in the finite element analysis of plates", Nuclear Eng. Des., 46, 203-222. https://doi.org/10.1016/0029-5493(78)90184-X.
- Lieu, Q.X. and Lee, J. (2017), ''A multi-resolution approach for multi-material topology optimization based on isogeometric analysis", Comput. Meth. Appl. Mech. Eng., 323, 272-302. https://doi.org/10.1016/j.cma.2017.05.009.
- Lieu, Q.X. and Lee, J. (2018), ''Multiresolution topology optimization using isogeometric analysis'', Int. J. Numer. Meth. Eng., 1-23. https://doi.org/10.1002/nme.5593.
- Liu, G.R. (2010), Meshfree Methods - Moving Beyond the Finite Element Method. CRC Press.
- Liu, P., Luo, Y. and Kang, Z. (2016), "Multi-material topology optimization considering interface behavior via XFEM and level set method", Comput. Meth. Appl. Mech. Engrg., 308, 113-133. https://doi.org/10.1016/j.cma.2016.05.016.
- Manickarajah, D., Xie, Y.M. and Steven, G.P. (1998), "An evolutionary method for optimization of plate buckling resistance", Finite Elem. Anal. Des., 29, 205-230. https://doi.org/10.1016/s0168-874x(98)00012-2.
- Onate, E., Zarate, F. and Flores, F. (1994), "A simple triangular element for thick and thin plate and shell analysis", Int. J. Num. Meth. Eng., 37, 2569-2582. https://doi.org/10.1002/nme.1620371505.
- Onate, E., Zienkiewicz, O.C., Suarez, B. and Taylor, R.L. (1992), "A general methodology for deriving shear constrained Reissner-Mindlin plate elements", Int. J. Num. Meth. Eng., 33, 345-367. https://doi.org/10.1002/NME.1620330208.
- Tavakoli, R. and Mohseni, M. (2014), "Alternating active-phase algorithm for multi-material topology optimization problems: a 115-line MATLAB implementation", Struct. Multidiscipl. Optim., 49, 621-642. https://doi.org/10.1007/s00158-013-0999-1.
- Thoi, T.N., Van, P.P., Hoang, C.T. and Xuan, H.N. (2013), "A cell-based smoothed vdiscrete shear gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell structures", Int. J. Mech. Sci., 74, 35-42. https://doi.org/10.1016/j.ijmecsci.2013.04.005.
- Veiga, L.B.D., Hughes, T.J.R., Kiendl, J., Lovadina, C., Niiranen, J., Reali, A. and Speleers, H. (2015), "A locking-free model for Reissner-Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS", Mathem. Models Meth. Appl. Sci., 25, 1519-1551. https://doi.org/10.1142/S0218202515500402.
- Videla, J., Natarajan, S. and Bordas, S.P.A. (2019), "A new locking-free polygonal plate element for thin and thick plates based on Reissner-Mindlin plate theory and assumed shear strain fields", Compos. Struct., 220, 32-42. https://doi.org/10.1016/j.compstruct.2017.07.092.
- Wana, D., Hu, D., Natarajan, S., Bordas, S.P.A. and Long, T. (2017), "A linear smoothed quadratic finite element for the analysis of laminated composite Reissner-Mindlin plates" Compos. Struct., 180, 395-411. https://doi.org/10.1016/j.compstruct.2017.07.092.
- Wang, M.Y, Wang, X. and Guo, D. (2003), "A level set method for structural topology optimization", Comput. Meth. Appl. Mech. Engrg., 192, 227-246. https://doi.org/10.1016/S0045-7825(02)00559-5.
- Wu, C., Fang, J. and Li, Q. (2019), "Multi-material topology optimization for thermal buckling criteria", Comput. Meth. Appl. Mech. Engrg., 346, 1136-1155. https://doi.org/10.1016/j.cma.2018.08.015.
- Xuan, H.N., Liu, G.R., Bordas, S., Natarajan, S. and Rabczuk, T. (2013), ''An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order'', Comput. Meth. Appl. Mech. Eng., 253, 252-273. https://doi.org/10.1016/j.cma.2012.07.017.
- Xuan, H.N., Rabczuk, T., Thanh, N.N., Thoi, T.N. and Bordas, S.P.A. (2010), "A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates", Comput. Mech., 46, 679-701. https://doi.org/10.1016/j.compstruc.2019.04.009.
- Yoon, G.H, Choi, H. and Hur, S. (2018), "Multiphysics topology optimization for piezoelectric acoustic focuser", Comput. Meth. Appl. Mech. Engrg., 332, 600-623. https://doi.org/10.1016/j.cma.2017.12.002.
- Zhou, M. (2004), "Topology optimization for shell structures with linear buckling responses", In WCCM VI. Beijing, China.
- Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration techniques in general of plates and shells", Int. J. Num. Meth. Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211.