DOI QR코드

DOI QR Code

Size-dependent strain rate sensitivity in structural steel investigated using continuous stiffness measurement nanoindentation

  • Ngoc-Vinh Nguyen (Department of Civil and Environmental Engineering, Sejong University) ;
  • Chao Chang (Department of Mechanics, School of Applied Science, Taiyuan University of Science and Technology) ;
  • Seung-Eock Kim (Department of Civil and Environmental Engineering, Sejong University)
  • Received : 2019.07.12
  • Accepted : 2023.01.19
  • Published : 2023.05.10

Abstract

The main purpose of this study is to characterize the size-dependent strain rate sensitivity in structural steel using the continue stiffness measurement (CSM) indentation. A series of experiments, such as CSM indentation and optical microscope examination, has been performed at the room temperature at different rate conditions. The results indicated that indentation hardness, strain rate, and flow stress showed size-dependent behavior. The dependency of indentation hardness, strain rate, and flow stress on the indentation size was attributed to the transition of the dislocation nucleation rate and the dislocation behaviors during the indentation process. Since both hardness and strain rate showed the size-dependent behavior, SRS tended to depend on the indentation depth. The results indicated that the SRS was quite high over 2.0 at the indentation depth of 240 nm and quickly dropping to 0.08, finally around 0.046 at large indents. The SRS values at large indentations strongly agree with the general range reported for several types of low-carbon steel in the literature (Chatfield and Rote 1974, Nguyen et al. 2018b, Luecke et al. 2005). The results from the present study can be used in both static and dynamic analyses of structures as well as to assess and understand the deformation mechanism and the stress-state of material underneath the indenter tip during the process of the indentation testing.

Keywords

Acknowledgement

This research has been done under the research project QG.22.25 [Experimental study on the dynamic behavior of microstructural phases in the weld zone under low-cycle fatigue using nanoindentation technology] of Vietnam Nation University, Hanoi.

References

  1. Alkorta, J., Martinez-Esnaola, J.M. and Sevillano, J.G. (2008), "Critical examination of strain-rate sensitivity measurement by nanoindentation methods: Application to severely deformed niobium", Acta Mater., 56, 884-893. https://doi.org/10.1016/j.actamat.2007.10.039.
  2. Antunes, J.M., Fernandes, J.V., Menezes, L.F. and Chaparro, B.M. (2007), "A new approach for reverse analyses in depth-sensing indentation using numerical simulation", Acta Mater., 55, 69-81. https://doi.org/10.1016/j.actamat.2006.08.019.
  3. Arthur, E.K., Ampaw, E., Kana, M.G.Z., Akinluwade, K.J., Adetunji, A.R., Adewoye, O.O. and Soboyejo W.O. (2015), "Indentation size effects in pack carbo-nitrided AISI 8620 steels", Mater. Sci. Eng. A, 644, 347-357. https://doi.org/10.1016/j.msea.2015.07.040.
  4. ASTM E2546-07 (2007), Standard Practice for Instrumented Indentation Testing, ASTM International, West Conshohocken, PA. https://doi.org/10.1520/E2546-15.
  5. ASTM, E3-01 (2007), Standard Guide for Preparation of Metallographic Specimens, ASTM International.
  6. Bridge, R.Q., Sukkar, T., Hayward, I.G. and Van Ommen, M. (2001), "Behaviour and design of structural steel pins", Steel Compos. Struct., 1(1), 97-110. https://doi.org/10.12989/scs.2001.1.1.097.
  7. Brnic, J., Canadija, M., Turkalj, G., Krscanski, S., Lanc, D., Brcic, M. and Gao Z. (2016), "Short-Time creep, fatigue and mechanical properties of 42CrMo4 - Low alloy structural steel", Steel Compos. Struct., 22(4), 875-888. https://doi.org/10.12989/scs.2016.22.4.875.
  8. Cai, Y. and Young, B. (2019), "Experimental investigation of carbon steel and stainless steel bolted connections at different strain rates", Steel Compos. Struct., 30(6), 551-565. https://doi.org/10.12989/scs.2019.30.6.551.
  9. Cao, Y.P. and Lu, J. (2004), "A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve", Acta Mater., 52, 4023-4032. https://doi.org/10.1016/j.actamat.2004.05.018.
  10. Chatfield, D.A. and Rote, R.R. (1974), "Strain rate effects on properties of high strength, low alloys steels", Soc. Automot. Eng., 740177, 1-12. https://doi.org/10.4271/740177
  11. Chen, J., Shen, Y., Liu, W., Beake, B.D., Shi, X., Wang, Z., Zhang, Y. and Guo, X. (2016), "Effects of loading rate on development of pile-up during indentation creep of polycrystalline copper", Mater. Sci. Eng. A, 656, 216-221. https://doi.org/10.1016/j.msea.2016.01.042.
  12. Chen, X.H., Chen, X. and Chen, H. (2018), "Influence of stress level on uniaxial ratcheting effect and ratcheting strain rate in austenitic stainless steel Z2CND18.12N", Steel Compos. Struct., 27(1), 89-94. https://doi.org/10.12989/scs.2018.27.1.089.
  13. Cheng, G.M., Jian, W.W., Xu, W.Z., Yuan, H., Millett, P.C. and Zhu, Y.T. (2013), "Grain size effect on deformation mechanisms of nanocrystalline bcc metals", Mater. Res. Lett., 1(1), 26-31. https://doi.org/10.1080/21663831.2012.739580.
  14. Chinh, N.Q., Gubicza, J., Kovacs, Z. and Lendvai, J. (2004), "Depth-sensing indentation tests in studying plastic instabilities", J. Mater. Res., 19(1), 31-45. https://doi.org/10.1557/jmr.2004.19.1.31.
  15. Chinh, N.Q., Horvath, G., Kovacs, Z. and Lendvai, J. (2002), "Characterization of plastic instability steps occurring in depth-sensing indentation tests", Mater. Sci. Eng. A, 324, 219-224. https://doi.org/10.1016/S0921-5093(01)01315-6.
  16. Choi, I.C., Kim, Y.J., Wang, Y.M., Ramamurty, U. and Jang, J. Il (2013), "Nanoindentation behavior of nanotwinned Cu: Influence of indenter angle on hardness, strain rate sensitivity and activation volume", Acta Mater., 61, 7313-7323. https://doi.org/10.1016/j.actamat.2013.08.037.
  17. Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A. and Suresh, S. (2001), "Computational modeling of the forward and reverse problems in instrumented sharp indentation", Acta Mater., 49, 3899-3918. https://doi.org/10.1016/S1359-6454(01)00295-6.
  18. Davies, R.G. and Magee, C.L. (1975), "The effect of strain-rate upon the tensile deformation of materials", J. Eng. Mater. Technol., 97, 151-155. https://doi.org/10.1115/1.3443275
  19. Durst, K., Backes, B. and Goken, M. (2005), "Indentation size effect in metallic materials: Correcting for the size of the plastic zone", Scr. Mater., 52, 1093-1097. https://doi.org/10.1016/j.scriptamat.2005.02.009.
  20. Faghihi, D. and Voyiadjis, G.Z. (2012), "Determination of nanoindentation size effects and variable material intrinsic length scale for body-centered cubic metals", Mech. Mater., 44, 189-211. https://doi.org/10.1016/j.mechmat.2011.07.002.
  21. Fisher-Cripps, A.C. (2011), Nanoindentation, Springer, 2087 Killarney Heights, New South Wales Australia. https://doi.org/10.1201/b12116.
  22. Gao, C. and Liu, M. (2017), "Instrumented indentation of fused silica by Berkovich indenter", J. Non. Cryst. Solids, 475, 151-160. https://doi.org/10.1016/j.jnoncrysol.2017.09.006
  23. Gao, X., Ma, Z.S., Jiang, W.J., Zhang, P.P., Wang, Y., Pan, Y. and Lu, C.S. (2016), "Stress-strain relationships of LixSn alloys for lithium ion batteries", J. Power Sources., 311, 21-28. https://doi.org/10.1016/j.jpowsour.2016.02.024.
  24. Giannakopoulos, A.E. and Suresh, S. (1999), "Determination of elastoplastic properties by instrumented sharp indentation", Scr. Mater., 40, 1191-1198. https://doi.org/10.1016/S1359-6462(99)00011-1
  25. Greer, J.R. and Nix, W.D. (2006), "Nanoscale gold pillars strengthened through dislocation starvation", Phys. Rev. B, 73, 245410. https://doi.org/10.1103/PhysRevB.73.245410.
  26. Hainsworth, S.V., Chandler, H.W. and Page, T.F. (1996), "Analysis of nanoindentation load-displacement loading curves", J. Mater. Res., 11 (8), 1987-1995. https://doi.org/10.1557/JMR.1996.0250
  27. Hakim, S.J.S. and Abdul Razak, H. (2013), "Structural damage detection of steel bridge girder using artificial neural networks and finite element models", Steel Compos. Struct., 14, 367-377. https://doi.org/10.12989/scs.2013.14.4.367.
  28. Hu, J., Sun, W., Jiang, Z., Zhang, W., Lu, J. and Huo, W. (2017), "Indentation size effect on hardness in the body-centered cubic coarse- grained and nanocrystalline tantalum", Mater. Sci. Eng. A, 686, 19-25. https://doi.org/10.1016/j.msea.2017.01.033.
  29. Hutchings, I.M. (2009), "The contributions of David Tabor to the science of indentation hardness", J. Mater. Res., 24(3), 581-589. https://doi.org/10.1557/jmr.2009.0085.
  30. Kasada, R., Ishii, D., Ando, M., Tanigawa, H., Ohata, M. and Konishi, S. (2015), "Dynamic tensile properties of reduced-activation ferritic steel F82H", Fusion Eng. Des., 100, 146-151. https://doi.org/10.1016/j.fusengdes.2015.05.001.
  31. Kim, J.J., Pham, T.H. and Kim, S.E. (2015), "Instrumented indentation testing and FE analysis for investigation of mechanical properties in structural steel weld zone", Int. J. Mech. Sci., 103, 265-274. https://doi.org/10.1016/j.ijmecsci.2015.09.015.
  32. Langseth, M.U.S., Lindholm, P.K. and Larsen, B.L. (1991), "Strain rate sensitivity of mild steel grade ST-52-3N", J. Eng. Mech., 117, 719-731. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:4(719).
  33. Liu, Y., Hay, J., Wang, H. and Zhang, X. (2014), "A new method for reliable determination of strain-rate sensitivity of low-dimensional metallic materials by using nanoindentation", Scr. Mater., 77, 5-8. https://doi.org/10.1016/j.scriptamat.2013.12.022.
  34. Liu, Y.C., Teo, J.W.R., Tung, S.K. and Lam, K.H. (2008), "High-temperature creep and hardness of eutectic 80Au/20Sn solder", J. Alloys Compd., 448, 340-343. https://doi.org/10.1016/j.jallcom.2006.12.142.
  35. Ma, Z.S., Zhou, Y.C., Long, S.G. and Lu, C.S. (2012), "An inverse approach for extracting elastic-plastic properties of thin films from small scale sharp indentation", J. Mater. Sci. Technol., 28, 626-635. https://doi.org/10.1016/S1005-0302(12)60108-X.
  36. Ma, Z.S., Long, S.G., Pan, Y. and Zhou, Y.C. (2008), "Loading rate sensitivity of nanoindentation creep in polycrystalline Ni films", J. Mater. Sci., 43, 5952-5955. https://doi.org/10.1007/s10853-008-2838-0.
  37. Ma, Y., Ye, G. and Hu, J. (2017), "Micro-mechanical properties of alkali-activated fly ash evaluated by nanoindentation", Constr. Build. Mater., 147, 407-416. https://doi.org/10.1016/j.conbuildmat.2017.04.176.
  38. Manjoine, M.J. (1944), "Influence of rate of strain and temperature on yield stresses of mild steel", J. Appl. Mech., 11, A211-A218. https://doi.org/10.1115/1.4009394
  39. Nagarajarao, N., Lohrmann, M. and Tall, L. (1966), "Effect of strain rate on the yield stress of structural steel", 1(1), 1-49.
  40. Nazeer, M.M., Khan, M.A. and Haq, A.U. (2003), "Optimal response of conical tool semi angle in ductile metal sheets indentation and its governing mechanics", Struct. Eng. Mech., 16(1), 47-62. https://doi.org/10.12989/sem.2003.16.1.047.
  41. Nguyen, N.V., Kim, J.J. and Kim, S.E. (2018a), "Methodology to extract constitutive equation at a strain rate level from indentation curves", Int. J. Mech. Sci., 152, 363-377. https://doi.org/10.1016/J.IJMECSCI.2018.12.023.
  42. Nguyen, N.V., Pham, T.H. and Kim, S.E. (2019a), "Strain rate sensitivity behavior of a structural steel during low-cycle fatigue investigated using indentation", Mater. Sci. Eng. A, 744, 490-499. https://doi.org/10.1016/j.msea.2018.12.025.
  43. Nguyen, N.V., Pham, T.H. and Kim, S.E. (2019b), "Microstructure and strain rate sensitivity behavior of SM490 structural steel weld zone investigated using indentation", Constr. Build. Mater., 206, 410-418. https://doi.org/10.1016/j.msea.2018.12.025.
  44. Nguyen, N.V., Pham, T.H. and Kim, S.E. (2018b), "Characterization of strain rate effects on the plastic properties of structural steel using nanoindentation", Constr. Build. Mater., 163, 305-314. https://doi.org/10.1016/j.conbuildmat.2017.12.122.
  45. Nix, W.D. and Gao, H.J. (1998), "Indentation size effects in crystalline materials: A law for strain gradient plasticity", J. Mech. Phys. Solids, 46, 411-425. https://doi.org/10.1016/s0022-5096(97)00086-0.
  46. Oliver, W.C. and Phar, G.M. (1992), "An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments", J. Mater. Res., 7(6), 1564-1583. https://doi.org/10.1557/JMR.1992.1564.
  47. Orowan, E. (1940), "Problems of plastic gliding", Proc. Phys. Soc., 52(8), 9-22. https://doi.org/10.1088/0959-5309/52/1/303
  48. Pham, T.H., Kim, J.J. and Kim, S.E. (2015), "Estimating constitutive equation of structural steel using indentation", Int. J. Mech. Sci., 90, 151-161. https://doi.org/10.1016/j.ijmecsci.2014.11.007.
  49. Rodriguez, R. and Gutierrez, I. (2003), "Correlation between nanoindentation and tensile properties influence of the indentation size effect", Mater. Sci. Eng. A, 361, 377-384. https://doi.org/10.1016/S0921-5093(03)00563-X.
  50. Sathish Gandhi, V.C., Kumaravelan, R. and Ramesh, S. (2014), "Performance analysis of spherical indentation process during loading and unloading - A contact mechanics approach", Struct. Eng. Mech., 52(3), 469-483. https://doi.org/10.12989/sem.2014.52.3.469.
  51. Shankar, S., Loganathan, P. and Mertens, A.J. (2015), "Analysis of pile-up/sink-in during spherical indentation for various strain hardening levels", Struct. Eng. Mech., 53(3), 429-442. https://doi.org/10.12989/sem.2015.53.3.429.
  52. Tabor (1951), The Hardness of Metals, Oxford at the Clarendon press, Amen House, London E.G.4.
  53. Luecke, W.E. (2005), Mechanical Properties of Structural Steels, National Institude of Standards and Technology, Washington. 
  54. Wei, Q. (2007), "Strain rate effects in the ultrafine grain and nanocrystalline regimes-influence on some constitutive responses", J. Mater. Sci., 42, 1709-1727. https://doi.org/10.1007/s10853-006-0700-9.
  55. Yang, B. and Vehoff, H. (2007), "Dependence of nanohardness upon indentation size and grain size - A local examination of the interaction between dislocations and grain boundaries", Acta Mater., 55, 849-856. https://doi.org/10.1016/j.actamat.2006.09.004.
  56. Zhao, J., Wang, F., Huang, P., Lu, T.J. and Xu, K.W. (2014), "Depth dependent strain rate sensitivity and inverse indentation size effect of hardness in body-centered cubic nanocrystalline metals", Mater. Sci. Eng. A, 615, 87-91. https://doi.org/10.1016/j.msea.2014.07.057.
  57. Zhu, X. and Liu, W. (2018), "The rock fragmentation mechanism and plastic energy dissipation analysis of rock indentation", Geomech. Eng., 16(2), 195-204.