DOI QR코드

DOI QR Code

Seismic optimization and performance assessment of special steel moment-resisting frames considering nonlinear soil-structure interaction

  • Saeed Gholizadeh (Department of Civil Engineering, Urmia University) ;
  • Arman Milany (Department of Civil Engineering, Urmia University) ;
  • Oguzhan Hasancebi (Department of Civil Engineering, Middle East Technical University)
  • 투고 : 2022.12.28
  • 심사 : 2023.04.13
  • 발행 : 2023.05.10

초록

The primary objective of the current study is to optimize and evaluate the seismic performance of steel momentresisting frame (MRF) structures considering soil-structure interaction (SSI) effects. The structural optimization is implemented in the context of performance-based design in accordance with FEMA-350 at different confidence levels from 50% to 90% by taking into account fixed- and flexible-base conditions using an efficient metaheuristic algorithm. Nonlinear response-history analysis (NRHA) is conducted to evaluate the seismic response of structures, and the beam-on-nonlinear Winkler foundation (BNWF) model is used to simulate the soil-foundation interaction under the MRFs. The seismic performance of optimally designed fixed- and flexible-base steel MRFs are compared in terms of overall damage index, seismic collapse safety, and interstory drift ratios at different performance levels. Two illustrative examples of 6- and 12-story steel MRFs are presented. The results show that the consideration of SSI in the optimization process of 6- and 12-story steel MRFs results in an increase of 1.0 to 9.0 % and 0.5 to 5.0 % in structural weight and a slight decrease in structural seismic safety at different confidence levels.

키워드

참고문헌

  1. Alaskar, A., Wakil K., Alyousef, R., Jermsittiparsert, K., Ho, L.S., Alabduljabbar, H., Alrshoudi, F. and Mohamed, A.M. (2020), "Computational analysis of three dimensional steel frame structures through different stiffening members", Steel Comp. Struct., 35(2), 187-197. https://doi.org/10.12989/scs.2020.35.2.187.
  2. ASCE 41-17 (2017), Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, Virginia, USA.
  3. Babakamali, M.H.S., Nasrollahzadeh, K. and Moghadam, A. (2022), "Iterative-R: A reliability-based calibration framework of response modification factor for steel frames", Steel Comp. Struct., 42(1), 59-74. https://doi.org/10.12989/scs.2022.42.1.059.
  4. Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W. and Abghari, A. (1999), "Seismic soil-pile-structure interaction experiments and analyses", J. Geotech. Geoenviron., 125(9), 750-759. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(750).
  5. Bresolin, J.M., Pravia, Z.M.C. and Kripka, M. (2022), "Discrete sizing and layout optimization of steel truss-framed structures with simulated annealing algorithm", Steel Comp. Struct., 44(5), 603-617. https://doi.org/10.12989/scs.2022.44.5.603.
  6. Farhadi, N., Saffari, H. and Torkzadeh, P. (2018), "Estimation of maximum and residual inter-storey drift in steel MRF considering soil-structure interaction from fixed-base analyses", Soil Dyn. Earthq. Eng., 114, 85-96. https://doi.org/10.1016/j.soildyn.2018.06.034.
  7. Fattahi, F. and Gholizadeh, S. (2019), "Seismic fragility assessment of optimally designed steel moment frames" Eng. Struct., 179, 37-51. https://doi.org/10.1016/j.engstruct.2018.10.075.
  8. Fathizadeh, S.F., Vosoughi, A.R. and Banan, M.R. (2021), "Considering soil-structure interaction effects on performancebased design optimization of moment-resisting steel frames by an engineered cluster-based genetic algorithm", Eng. Opt., 53, 440-460. https://doi.org/10.1080/0305215X.2020.1739278.
  9. FEMA-350 (2000), Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, Federal Emergency Management Agency, Washington, DC, USA.
  10. FEMA-P695 (2009), Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency, Washington, DC, USA.
  11. Fragiadakis, M., Lagaros, N.D. and Papadrakakis, M. (2006), "Performance-based multiobjective optimum design of steel structures considering life-cycle cost", Struct. Multidisc. Optim., 32, 1-11. https://doi.org/10.1007/s00158-006-0009-y.
  12. Ganjavi, B. and Hao, H. (2012), "A parametric study on the evaluation of ductility demand distribution in multi-degree-offreedom systems considering soil-structure interaction effects", Eng. Struct., 43, 88-104. https://doi.org/10.1016/j.engstruct.2012.05.006.
  13. Ghandil, M. and Behnamfar, F. (2017), "Ductility demands of MRF structures on soft soils considering soil-structure interaction", Soil Dyn. Earthq. Eng., 92, 203-214. https://doi.org/10.1016/j.soildyn.2016.09.051.
  14. Ghannad, M.A. and Jahankhah, H. (2007), "Site-dependent strength reduction factors for soil-structure systems", Soil Dyn. Earthq. Eng., 27, 99-110. https://doi.org/10.1016/j.soildyn.2006.06.002.
  15. Gholizadeh, S., Hasancebi, O., Eser, H. and Kockaya, O. (2022), "Seismic collapse safety based optimization of steel momentresisting frames", Structure, 45, 329-342. https://doi.org/10.1016/j.istruc.2022.09.034.
  16. Gholizadeh, S., Hassanzadeh, A., Milany, A. and Farrokh-Ghatte, H. (2022), "On the seismic collapse capacity of optimally designed steel braced frames", Eng. Comput., 38, 985-997. https://doi.org/10.1007/s00366-020-01096-7.
  17. Gholizadeh, S., Danesh, M. and Gheyratmand, C. (2020), "A new Newton metaheuristic algorithm for discrete performance-based design optimization of steel moment frames", Comput. Struct., 234, 106250. https://doi.org/10.1016/j.compstruc.2020.106250.
  18. Gholizadeh, S. and Ebadijalal, M. (2018), "Performance based discrete topology optimization of steel braced frames by a new metaheuristic", Adv. Eng. Softw., 123, 77-92. https://doi.org/10.1016/j.advengsoft.2018.06.002.
  19. Ghosh, S., Datta, D. and Katakdhond, A.A. (2011), "Estimation of the Park-Ang damage index for planar multi-storey frames using equivalent single-degree systems", Eng. Struct., 33(9), 2509-2524. https://doi.org/10.1016/j.engstruct.2011.04.023.
  20. Han, B., Sun, J.B., Heidarzadeh, M., Jam, M.M.N. and Benjeddou, O. (2021), "Three dimensional dynamic soil interaction analysis in time domain through the soft computing", Steel Comp. Struct., 41(5), 761-773. https://doi.org/10.12989/scs.2021.41.5.761.
  21. Lagaros, N.D. and Fragiadakis, M. (2007), "Robust performancebased design optimization of steel moment resisting frames", J. Earthq. Eng., 11(5), 752-772. https://doi.org/10.1080/13632460601087229.
  22. Lu, Y., Hajirasouliha, I. and Marshall, A.M. (2016), "Performance-based seismic design of flexible-base multistorey buildings considering soil-structure interaction", Eng. Struct., 108, 90-103. https://doi.org/10.1016/j.engstruct.2015.11.031.
  23. Marzban, S., Banazadeh, M. and Azarbakht, A. (2014), "Seismic performance of reinforced concrete shear wall frames considering soil-foundation-structure interaction", Struct. Des. Tall Spec. Build., 23(4), 302-318. https://doi.org/10.1002/tal.1048.
  24. Mashhadi, S., Asadi, A., Homaei F. and Tajammolian, H. (2020), "The performance-based seismic response of special steel MRF: Effects of pulse-like ground motion and foundation safety factor", Structures, 28, 127-140. https://doi.org/10.1016/j.istruc.2020.08.040.
  25. Mylonakis, G. and Gazetas, G. (2000), "Seismic soil-structure interaction: beneficial or detrimental", J. Earthq. Eng., 4(3), 277-301. https://doi.org/10.1080/13632460009350372.
  26. Nakhaei, M. and Ghannad, M.A. (2008), "The effect of soilstructure interaction on damage index of buildings", Eng. Struct., 30(6), 1491-1499. https://doi.org/10.1016/j.engstruct.2007.04.009.
  27. Park, Y.J., Ang, A.H.S. and Wen, Y.K. (1987), "Damage-limiting aseismic design of buildings", Earthq. Spectra, 3(1), 1-26. https://doi.org/10.1193/1.1585416.
  28. Pauletto, M.P. and Kripka, M. (2022), "Simulated squirrel search algorithm: a hybrid metaheuristic method and its application to steel space truss optimization", Steel Comp. Struct., 45(4), 579-590. https://doi.org/ 10.12989/scs.2022.45.4.579.
  29. Rajeev, P. and Tesfamariam, S. (2012), "Seismic fragilities of non-ductile reinforced concrete frames with consideration of soil structure interaction", Soil Dyn. Earthq. Eng., 40, 78-86. https://doi.org/10.1016/j.soildyn.2012.04.008.
  30. Raychowdhury, P. (2011), "Seismic response of low-rise steel moment-resisting frame (SMRF) buildings incorporating nonlinear soil-structure interaction (SSI)", Eng. Struct., 33(3), 958-967. https://doi.org/10.1016/j.engstruct.2010.12.017.
  31. Raychowdhury, P. and Hutchinson, T.C. (2008), "Nonlinear Winkler-based shallow foundation model for performance assessment of seismically loaded structures", UC San Diego Electronic Theses and Dissertations. http://escholarship.org/uc/item/6b7322bj.
  32. Raychowdhury, P. and Hutchinson, T.C. (2008), ShallowFoundationGen OpenSees Documentation, Open System for Earthquake Engineering Simulation (OpenSEES), University of California, San Diego.
  33. Raychowdhury, P. and Hutchinson, T.C. (2009), "Performance evaluation of a nonlinear Winkler-based shallow foundation model using centrifuge test results", Earthq. Eng. Struct. Dyn., 38(5), 679-698. https://doi.org/10.1002/eqe.902.
  34. Raychowdhury, P. and Ray-Chaudhuri, S. (2015), "Seismic response of nonstructural components supported by a 4-story SMRF: Effect of nonlinear soil-structure interaction", Structures, 3, 200-210. https://doi.org/10.1016/j.istruc.2015.04.006.
  35. Rojas, H.A., Pezeshk, S. and Foley, C.M. (2007), "Performancebased optimization considering both structural and nonstructural components", Earthq. Spectra, 23(3), 685-709. https://doi.org/10.1193/1.2754002.
  36. Saadat, S., Camp, C.V. and Pezeshk, S. (2014), "Seismic performance-based design optimization considering direct economic loss and direct social loss", Eng. Struct., 79, 193-201. http://dx.doi.org/10.1016/j.engstruct.2014.07.008.
  37. Saez, E., Lopez-Caballero, F. and Modaressi-Farahmand-Razavi, A. (2011), "Effect of the inelastic dynamic soil-structure interaction on the seismic vulnerability assessment", Struct. Saf., 33(1), 51-63. https://doi.org/10.1016/j.strusafe.2010.05.004.
  38. Saez, E., Lopez-Caballero, F. and Modaressi-Farahmand-Razavi, A. (2013), "Inelastic dynamic soil-structure interaction effects on moment-resisting frame buildings", Eng. Struct., 51, 166-177. https://doi.org/10.1016/j.engstruct.2013.01.020.
  39. Shakib, H. and Homaei, F. (2017), "Probabilistic seismic performance assessment of the soil-structure interaction effect on seismic response of mid-rise setback steel buildings", Bull. Earthq. Eng., 15(7), 2827-2851. https://doi.org/10.1007/s10518-017-0087-9.