DOI QR코드

DOI QR Code

Sealing design optimization of nuclear pressure relief valves based on the polynomial chaos expansion surrogate model

  • 투고 : 2022.10.01
  • 심사 : 2022.12.10
  • 발행 : 2023.04.25

초록

Pressure relief valve (PRV) is one of the important control valves used in nuclear power plants, and its sealing performance is crucial to ensure the safety and function of the entire pressure system. For the sealing performance improving purpose, an explicit function that accounts for all design parameters and can accurately describe the relationship between the multi-design parameters and the seal performance is essential, which is also the challenge of the valve seal design and/or optimization work. On this basis, a surrogate model-based design optimization is carried out in this paper. To obtain the basic data required by the surrogate model, both the Finite Element Model (FEM) and the Computational Fluid Dynamics (CFD) based numerical models were successively established, and thereby both the contact stresses of valve static sealing and dynamic impact (between valve disk and nozzle) could be predicted. With these basic data, the polynomial chaos expansion (PCE) surrogate model which can not only be used for inputs-outputs relationship construction, but also produce the sensitivity of different design parameters were developed. Based on the PCE surrogate model, a new design scheme was obtained after optimization, in which the valve sealing stress is increased by 24.42% while keeping the maximum impact stress lower than 90% of the material allowable stress. The result confirms the ability and feasibility of the method proposed in this paper, and should also be suitable for performance design optimizations of control valves with similar structures.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China (No. 52205251). Thanks also to Beijing Super Cloud Computing Center.

참고문헌

  1. Han Y., Zhou L., Bai L., Xue P., Lv W.N., Shi W.D., Huang G.Y., Transient Simulation and Experiment Validation on the Opening and Closing Process of a Ball Valve. Nuclear Engineering and Technology, article in press.
  2. W.Q. Li, L. Zhao, Y. Yue, J.Y. Wu, Z.J. Jin, J.Y. Qian, Thermo-mechanical stress analysis of feed-water valves in nuclear power plants, Nucl. Eng. Technol. 54 (2022) 849-859. https://doi.org/10.1016/j.net.2021.09.018
  3. C.J. Hos, A.R. Champneys, K. Paul, M. McNeely, Dynamic behavior of direct spring loaded pressure relief valves in gas service: model development, measurements and instability mechanisms, J. Loss Prev. Process. Ind. 31 (2014) 70-81. https://doi.org/10.1016/j.jlp.2014.06.005
  4. N.L. Scuro, E. Angelo, G. Angelo, D.A. Andrade, A CFD analysis of the flow dynamics of a directly-operated safety relief valve, Nucl. Eng. Des. 328 (2018) 321-332. https://doi.org/10.1016/j.nucengdes.2018.01.024
  5. C.Y. Zong, F.J. Zheng, W. Dempster, D.J. Chen, X.G. Song, High-fidelity Computational Fluid Dynamics modeling and analysis of a pressure vessel-pipe-safety valve system in gas service, J. Pressure Vessel Technol. 143 (2021), 041702-1.
  6. Sizing, Selection, and Installation of Pressure-Relieving Devices, Part I-Sizing and Selection, API STANDARD 520, NINTH EDITION, July, 2014, pp. 7-8.
  7. S.X. Bai, Y.S. Song, J. Yang, Elastic deformation of liquid spiral groove face seals operating at high speeds and low pressure, Int. J. Mech. Sci. 226 (2022), 107397.
  8. N. Liu, Z.L. Liu, Y.X. Li, L.X. Sang, An optimization study on the seal structure of fully-rotary valve energy recovery device by CFD, Desalination 459 (2019) 46-58. https://doi.org/10.1016/j.desal.2019.03.001
  9. W.Q. Li, L. Zhao, Y. Yue, J.Y. Wu, Z.J. Jin, J.Y. Qian, Thermo-mechanical stress analysis of feed-water valves in nuclear power plants, Nucl. Eng. Technol. 54 (2022) 849-859. https://doi.org/10.1016/j.net.2021.09.018
  10. M. Costas, J. Diaz, L. Romera, S. Hern andez, A multi-objective surrogate-based optimization of the crash worthiness of a hybrid impact absorber, Int. J. Mech. Sci. 88 (2014) 46-54. https://doi.org/10.1016/j.ijmecsci.2014.07.002
  11. W. Xiao, X.N. Du, W.X. Chen, G. Yang, D. Hu, X. Han, Cooperative collapse of helical structure enables the action of twisting pneumatic artificial muscle, Int. J. Mech. Sci. 201 (2021), 106483.
  12. Sun, W., Meng, G. X., Ye, Q., & Zhang, J. Z., Prediction of leakage of a pressure-relief valve based on support vector regression with auxiliary input information. Proc. IME C J. Mech. Eng. Sci., 225(8), 1984-1990.
  13. Song, X., Lv, L., Sun, W., & Zhang, J., A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models. Struct. Multidiscip. Optim., 60(3), 965-981.
  14. Crestaux, T., Le Maitre, O., & Martinez, J. M., Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Saf., 94(7), 1161-1172.
  15. Sudret, B., Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf., 93(7), 964-979.
  16. Luthen, N., Marelli, S., & Sudret, B., Sparse polynomial chaos expansions: literature survey and benchmark. SIAM/ASA J. Uncertain. Quantification, 9(2), 593-649.
  17. Torre, E., Marelli, S., Embrechts, P., & Sudret, B., Data-driven polynomial chaos expansion for machine learning regression. J. Comput. Phys., 388, 601-623.
  18. Hariri-Ardebili, M. A., & Sudret, B., Polynomial chaos expansion for uncertainty quantification of dam engineering problems. Eng. Struct., 203, 109631.
  19. ANSYS Inc., ANSYS Documentation, Fluent, Turbulence, 4.0.
  20. J. Zhang, X.X. Yue, J.J. Qiu, L.J. Zhuo, J.G. Zhu, Sparse polynomial chaos expansion based on Bregman-iterative greedy coordinate descent for global sensitivity analysis, Mech. Syst. Signal Process. 157 (2021), 107727.
  21. Homma, T., & Saltelli, A., Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf., 52(1), 1-17.
  22. I.M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simulat. 55 (1-3) (2001) 271-280. https://doi.org/10.1016/S0378-4754(00)00270-6
  23. Okten, G., & Liu, Y., Randomized quasi-Monte Carlo methods in global sensitivity analysis. Reliab. Eng. Syst. Saf., 210, 107520.
  24. A. Olsson, G. Sandberg, O. Dahlblom, On Latin hypercube sampling for structural reliability analysis, Struct. Saf. 25 (1) (2003) 47-68. https://doi.org/10.1016/S0167-4730(02)00039-5
  25. J. Zhang, X. Yue, J. Qiu, M. Zhang, X. Wang, A unified ensemble of surrogates with global and local measures for global metamodelling, Eng. Optim. 53 (3) (2021) 474-495. https://doi.org/10.1080/0305215X.2020.1739280
  26. M. Shi, Z. Liang, J. Zhang, L. Xu, X. Song, A robust prediction method based on Kriging method and fuzzy c-means algorithm with application to a combine harvester, Struct. Multidiscip. Optim. 65 (9) (2022) 1-18. https://doi.org/10.1007/s00158-021-03092-x