DOI QR코드

DOI QR Code

Experimental consideration for contact angle and force acting on bubble under nucleate pool boiling

  • Ji-Hwan Park (Department of Mechanical Engineering, Graduate School, Kyungpook National University) ;
  • Il Seouk Park (Department of Mechanical Engineering, Graduate School, Kyungpook National University) ;
  • Daeseong Jo (Department of Mechanical Engineering, Graduate School, Kyungpook National University)
  • 투고 : 2022.09.19
  • 심사 : 2022.12.17
  • 발행 : 2023.04.25

초록

Pool boiling experiments are performed within an isolated bubble regime at inclination angles of 0° and 45°. When a bubble grows and departs from the heating surface, the pressure, buoyancy, and surface tension force play important roles. The curvature and base diameter are required to calculate the pressure force, the bubble volume is required to calculate the buoyancy force, and the contact angle and base diameter are required to calculate the surface tension force. The contact angle, base diameter, and volume of the bubbles are evaluated using images captured via a high-speed camera. The surface tension force equation proposed by Fritz is modified with the contact angles obtained in this study. When the bubble grows, the contact angle decreases slowly. However, when the bubble departs, the contact angle rapidly increases owing to necking. At an inclination angle of 0°, the contact angle is calculated as 82.88° at departure. Additionally, the advancing and receding contact angles are calculated as 70.25° and 82.28° at departure, respectively, at an inclination angle of 45°. The dynamic behaviors of bubble growth and departure are discussed with forces by pressure, buoyancy, and surface tension.

키워드

과제정보

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2019M2D2A1A02058115) and by the Korea Evaluation Institute of Industrial Technology (KEIT) grant funded by the Korea Government, Ministry of Trade, Industrial, and Energy (Grant No. 20012453).

참고문헌

  1. P.E. Tuma, The Merits of Open Bath Immersion Cooling of Datacom Equipment, 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2010, pp. 123-131. St. Paul, Santa Clara, CA, USA.
  2. B.A. Weerts, R. Weaver, D. Gallaher, P.E. Otto Van Greet, Green Data Center Cooling: Achieving 90 % Reduction: Airside Economization and Unique Indirect Evaporative, IEEE Green Technologies Conference, Tulsa, OK, USA, 2012, pp. 19-20.
  3. A.H. Khalaj, S.K. Halgamuge, A review on efficient thermal management of air-and liquid-cooled data centers: from chip to the cooling system, Appl. Energy 205 (2017) 1165-1188. https://doi.org/10.1016/j.apenergy.2017.08.037
  4. Y. Deng, C. Feng, J. E, H. Zhu, J. Chen, M. Wen, H. Yin, Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: a review, Appl. Therm. Eng. 142 (2018) 10-29. https://doi.org/10.1016/j.applthermaleng.2018.06.043
  5. G. Xia, L. Cao, G. Bi, A review on battery thermal management in electric vehicle application, J. Power Sources 367 (2017) 90-105. https://doi.org/10.1016/j.jpowsour.2017.09.046
  6. M.S. El-Genk, Immersion cooling nucleate boiling of high power computer chips, Energy Convers. Manag. 53 (2012) 205-218. https://doi.org/10.1016/j.enconman.2011.08.008
  7. C.G.J. Prakash, R. Prasanth, Enhanced boiling heat transfer by nano structured surfaces and nanofluids, Renew. Sustain. Energy Rev. 82 (2018) 4028-4043. https://doi.org/10.1016/j.rser.2017.10.069
  8. L.Z. Zeng, J.F. Klausner, R. Mei, A unified model for the prediction of bubble detachment diameters in boiling systems-I. Pool boiling, Int. J. Heat Mass Tran. 36 (9) (1993), 2661-2270.
  9. E. Ruckenstein, A physical model for nucleate boiling heat transfer, Int. J. Heat Mass Tran. 7 (2) (1964) 191-198. https://doi.org/10.1016/0017-9310(64)90083-3
  10. J.B. Roll, J.E. Myers, The effect of surface tension on factors in boiling heat transfer, Am. Inst. Chem. Eng. J. 10 (4) (1964) 530-534. https://doi.org/10.1002/aic.690100422
  11. Y.A. Cengel, J.M. Cimbala, Fluid Mechanics-Fundamentals and Applications, third ed., McGrawHill Education, New York, 2014.
  12. W. Fritz, Maximum volume of vapor bubbles, Phys. Z. 36 (1935) 379-384.
  13. G. Hetsroni, A. Mosyak, E. Pogrebnyak, I. Sher, Z. Segal, Bubble growth in saturated pool boiling in water and surfactant solution, Int. J. Multiphas. Flow 32 (2006) 159-182. https://doi.org/10.1016/j.ijmultiphaseflow.2005.10.002
  14. A. Mukherjee, S.G. Kandlikar, Numerical study of single bubbles with dynamic contact angle during nucleate pool boiling, Int. J. Heat Mass Tran. 50 (2007) 127-138. https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.037
  15. Y. Nam, J. Wu, G. Warrier, Y.S. Ju, Experimental and numerical study of single bubble dynamics on a hydrophobic surface, J. Heat Tran. 131 (2009), 121004.
  16. E. Teodori, T. Valente, I. Malavasi, A.S. Moita, M. Marengo, A.L.N. Moreira, Effect of extreme wetting scenarios on pool boiling conditions, Appl. Therm. Eng. 115 (2017) 1424-1437. https://doi.org/10.1016/j.applthermaleng.2016.11.079
  17. G. Duhar, C. Colin, Dynamics of bubble growth and detachment in a viscous shear flow, Phys. Fluid. 18 (2006), 077101-1-077101-13. https://doi.org/10.1063/1.2213638
  18. M. Lebon, J. Sebilleau, C. Colin, Dynamics of growth and detachment of an isolated bubble on an inclined surface, Phys. Rev. 3 (2018), 073602-1-073602-16. https://doi.org/10.1103/PhysRevFluids.3.073602
  19. R. Cole, H.L. Shulman, Bubble growth rates at high Jakob numbers, Int. J. Heat Mass Tran. 9 (1966) 1377-1390. https://doi.org/10.1016/0017-9310(66)90135-9
  20. H. Chen, G. Chen, X. Zou, Y. Yao, M. Gong, Experimental investigations on bubble departure diameter and frequency of methane saturated nucleate pool boiling at four different pressures, Int. J. Heat Mass Tran. 112 (2017) 662-675. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.031
  21. P. Zhou, R. Huang, S. Huang, Y. Zhang, X. Rao, Experimental investigation on bubble contact diameter and bubble departure diameter in horizontal subcooled flow boiling, Int. J. Heat Mass Tran. 149 (2020), 119105.
  22. P.B. Kowalczuk, J. Drzymala, Physical meaning of the Sauter mean diameter of spherical particulate matter, Part. Sci. Technol. 34 (2016) 645-647. https://doi.org/10.1080/02726351.2015.1099582
  23. A. Gordiychuk, M. Svanera, S. Benini, P. Poesio, Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator, Exp. Therm. Fluid Sci. 70 (2016) 51-60. https://doi.org/10.1016/j.expthermflusci.2015.08.014
  24. E.F. Tanjung, D. Jo, Visualization study on pool boiling critical heat flux under rolling motion, Int. J. Heat Mass Tran. 153 (2020), 119620.
  25. E.F. Tanjung, B.O. Alunda, Y.J. Lee, D. Jo, Experimental study of bubble behaviors and CHF on printed circuit board (PCB) in saturated pool water at various inclination angles, Nucl. Eng. Technol. 50 (2018) 1068-1078. https://doi.org/10.1016/j.net.2018.06.011
  26. H. Jo, D. Jo, Experimental studies of condensing vapor bubbles in subcooled pool water using visual and acoustic analysis methods, Ann. Nucl. Energy 110 (2017) 171-185. https://doi.org/10.1016/j.anucene.2017.06.030