DOI QR코드

DOI QR Code

Experimental study on single- and two-phase flow behaviors within porous particle beds

  • Jong Seok Oh (School of Energy System Engineering, Chung-Ang University) ;
  • Sang Mo An (Korea Atomic Energy Research Institute) ;
  • Hwan Yeol Kim (Korea Atomic Energy Research Institute) ;
  • Dong Eok Kim (School of Energy System Engineering, Chung-Ang University)
  • 투고 : 2022.06.07
  • 심사 : 2022.10.30
  • 발행 : 2023.03.25

초록

In this study, the pressure drop behavior of single- and two-phase flows of air and water through the porous beds filled with uniform and non-uniform sized spherical particles was examined. The pressure drop data in the single-phase flow experiments for the uniform particle beds agreed well with the original Ergun correlation. The results from the two-phase flow experiments were analyzed using numerical results based on three types of previous models. In the experiments for the uniform particle beds, the data on the two-phase pressure drop clearly showed the effect of the flow regime transition with a variation in the gas flow rate under stagnant liquid condition. The numerical analyses indicated that the predictability of the previous models for the experimental data relied mainly on the sub-models of the flow regime transitions and interfacial drag. In the experiments for the non-uniform particle beds, the two-phase pressure loss could be predicted well with numerical calculations based on the effective particle diameter. However, the previous models failed to accurately predict the counter-current flooding limit observed in the experiments. Finally, we propose a relation of falling liquid velocity into the particle bed by gravity to appropriately simulate the CCFL phenomenon.

키워드

과제정보

This work was supported by the Korean Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20193110100090).

참고문헌

  1. B. Ghanbarian, A.G. Hunt, R.P. Ewing, M. Sahimi, Tortuosity in porous media: a critical review, Soil Sci. Soc. Am. J. 77 (5) (2013) 1461-1477. https://doi.org/10.2136/sssaj2012.0435
  2. R.H. Davis, H.A. Stone, Flow-through beds of porous particles, Chem. Eng. Sci. 48 (23) (1993) 3993-4005. https://doi.org/10.1016/0009-2509(93)80378-4
  3. R. Narayan, J.R. Coury, J.H. Masliyah, M.R. Gray, Particle capture and plugging in packed-bed reactors, Ind. Eng. Chem. Res. 36 (11) (1997) 4620-4627. https://doi.org/10.1021/ie970101e
  4. V.K. Dhir, L. Barleon, Dryout heat-flux in a bottom-heated porous layer, Trans. Am. Nucl. Soc. 38 (Jun.) (1981) 385-386.
  5. K. Hu, T.G. Theofanous, On the measurement and mechanism of dryout in volumetrically heated coarse particle beds, Int. J. Multiphas. Flow 17 (4) (1991) 519-532. https://doi.org/10.1016/0301-9322(91)90047-7
  6. R.J. Lipinski, A Model for Boiling and Dryout in Particle Beds, No. NUREG/CR2646, Sandia National Labs., 1982.
  7. W. Schmidt, Influence of Multidimensionality and Interfacial Friction on the Coolability of Fragmented Corium, Ph. D. Thesis, Univ. Stuttgart, 2004.
  8. T. Schulenberg, U. Muller, An improved model for two-phase flow through beds of coarse particles, Int. J. Multiphas. Flow 13 (1) (1987) 87-97. https://doi.org/10.1016/0301-9322(87)90009-7
  9. V.X. Tung, V.K. Dhir, A hydrodynamic model for two-phase flow through porous media, Int. J. Multiphas. Flow 14 (1) (1988) 47-65. https://doi.org/10.1016/0301-9322(88)90033-X
  10. R. Clavier, N. Chikhi, F. Fichot, M. Quintard, Experimental investigation on single-phase pressure losses in nuclear debris beds: identification of flow regimes and effective diameter, Nucl. Eng. Des. 292 (2015) 222-236. https://doi.org/10.1016/j.nucengdes.2015.07.003
  11. D. Handley, P.J. Heggs, Momentum and heat transfer mechanisms in regular shaped packings, Trans. Inst. Chem. Eng. 46 (1968) T251-T264.
  12. S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog. 48 (1952) 89-94.
  13. E.A. Foumeny, F. Benyahia, J.A.A. Castro, H.A. Moallemi, S. Roshani, Correlations of pressure-drop in packed-beds taking into account the effect of confining wall, Int. J. Heat Mass Tran. 36 (2) (1993) 536-540. https://doi.org/10.1016/0017-9310(93)80028-S
  14. M. Leva, Fluidization, McGraw-Hill, New York, 1959.
  15. D. Nemec, J. Levec, Flow through packed bed reactors: 1. Single-phase flow, Chem. Eng. Sci. 60 (24) (2005) 6947-6957. https://doi.org/10.1016/j.ces.2005.05.068
  16. E. Ozahi, M.Y. Gundogdu, M.O. Carpinlioglu, A modi € fication on Ergun's correlation for use in cylindrical packed beds with non-spherical particles, Adv. Powder Technol. 19 (4) (2008) 369-381. https://doi.org/10.1163/156855208X314985
  17. J.H. Park, M. Lee, K. Moriyama, M.H. Kim, H.S. Park, Influence of particle morphology on pressure gradients of single-phase air flow in the mono-size non-spherical particle beds, Ann. Nucl. Energy 115 (2018) 1-8. https://doi.org/10.1016/j.anucene.2017.12.032
  18. J. Wu, B. Yu, M. Yun, A resistance model for flow through porous media, Transport Porous Media 71 (3) (2008) 331-343. https://doi.org/10.1007/s11242-007-9129-0
  19. M. Lee, H.S. Park, J.H. Park, J.H. Oh, M.H. Kim, Two-phase flow pressure loss through packed particle bed for wide void fraction range, Exp. Therm. Fluid Sci. 108 (2019) 85-94. https://doi.org/10.1016/j.expthermflusci.2019.06.001
  20. N.K. Tutu, T. Ginsberg, J.C. Chen, Interfacial drag for two-phase flow through high permeability porous beds, J. Heat Tran. 106 (4) (1984) 865-870. https://doi.org/10.1115/1.3246765
  21. A.S. Naik, V.K. Dhir, Forced flow evaporative cooling of a volumetrically heated porous layer, Int. J. Heat Mass Tran. 25 (4) (1982) 541-552. https://doi.org/10.1016/0017-9310(82)90057-6
  22. J.H. Park, H.S. Park, M. Lee, K. Moriyama, Modeling of pressure drop in twophase flow of mono-sized spherical particle beds, Int. J. Heat Mass Tran. 127 (2018) 986-995. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.040
  23. R.E. Henry, H.K. Fauske, Core melt progression and the attainment of a permanently coolable state, Proc. ANS/ENS Topical Mtg. on Reactor Safety Aspects of Fuel Behavior 2 (1981) 481-495.
  24. V.K. Dhir, I. Catton, Prediction of dryout heat fluxes in bed of volumetrically heated particles, Proc. Int. Mtg. on Fast Reactor Safety and Related Physics (1976). No. CONF-761001-P4.
  25. D.Y. Yeo, H.C. No, A zero-dimensional dryout heat flux model based on mechanistic interfacial friction models for two-phase flow regimes with channel flow in a packed bed, Int. J. Heat Mass Tran. 141 (2019) 554-568. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.096
  26. A.W. Reed, The Effect of Channeling on the Dryout of Heated Particulate Beds Immersed in a Liquid Pool, Ph. D. Thesis, MIT, 1982.
  27. T.K. Sherwood, G.H. Shipley, F.A.L. Holloway, Flooding velocities in packed columns, Ind. Eng. Chem. 30 (7) (1938) 765-769. https://doi.org/10.1021/ie50343a008
  28. G.B. Wallis, One-dimensional Two-phase Flow, McGraw-Hill, New York, 1969.
  29. J.S. Marshall, V.K. Dhir, Hydrodynamics of Counter-current Two Phase Flow through Porous Media, No. NUREG/CR-3995, California Univ., 1984.
  30. V.E. Schrock, C.H. Wang, S. Revankar, L.H. Wei, S.Y. Lee, D. Squarer, Flooding in Particle Beds and its Role in Dryout Heat Fluxes, Proc. 6th Inform. Exchan. Mtg. On Debris Coolability, UCLA, Los Angeles, 1984.
  31. H.Y. Kim, K.H. Park, K.S. Choi, C.W. Kang, J.H. Jung, S.M. An, Analysis of nonexplosive TROI particles for debris-bed coolability study, Trans. KNS Virt. Autum. Mtg. (2019). Dec.
  32. S. Rahman, Coolability of Corium Debris under Severe Accident Conditions in Light Water Reactors, Ph. D. Thesis, Univ. Stuttgart, 2013.
  33. D. Haga, Y. Niibori, T. Chida, Tracer responses in gas-liquid two-phase flow through porous media, in: Proceedings World Geothermal Congress, 2000, pp. 2591-2596.
  34. L. Li, W. Ma, Experimental characterization of the effective particle diameter of a particulate bed packed with multi-diameter spheres, Nucl. Eng. Des. 241 (5) (2011) 1736-1745. https://doi.org/10.1016/j.nucengdes.2011.03.013
  35. J.H. Park, M. Lee, K. Moriyama, M.H. Kim, E. Kim, H.S. Park, Adequacy of effective diameter in predicting pressure gradients of air flow through packed beds with particle size distribution, Ann. Nucl. Energy 112 (2018) 769-778. https://doi.org/10.1016/j.anucene.2017.08.053
  36. G.B. Wallis, Flooding Velocities for Air and Water in Vertical Tubes, UKAEA, Rep. AEEW-R123, Harwell, England, 1961.