DOI QR코드

DOI QR Code

Insights from an OKMC simulation of dose rate effects on the irradiated microstructure of RPV model alloys

  • Jianyang Li (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Chonghong Zhang (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Ignacio Martin-Bragado (UCAM, Universidad Catolica de Murcia, Campus de Los Jeronimos) ;
  • Yitao Yang (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Tieshan Wang (School of Nuclear Science and Technology, Lanzhou University)
  • 투고 : 2022.08.04
  • 심사 : 2022.11.22
  • 발행 : 2023.03.25

초록

This work studies the defect features in a dilute FeMnNi alloy by an Object Kinetic Monte Carlo (OKMC) model based on the "grey-alloy" method. The dose rate effect is studied at 573 K in a wide range of dose rates from 10-8 to 10-4 displacement per atom (dpa)/s and demonstrates that the density of defect clusters rises while the average size of defect clusters decreases with increasing dose rate. However, the dose-rate effect decreases with increasing irradiation dose. The model considered two realistic mechanisms for producing <100>-type self-interstitial atom (SIA) loops and gave reasonable production ratios compared with experimental results. Our simulation shows that the proportion of <100>-type SIA loops could change obviously with the dose rate, influencing hardening prediction for various dose rates irradiation. We also investigated ways to compensate for the dose rate effect. The simulation results verified that about a 100 K temperature shift at a high dose rate of 1×10-4 dpa/s could produce similar irradiation microstructures to a lower dose rate of 1×10-7 dpa/s irradiation, including matrix defects and deduced solute migration events. The work brings new insight into the OKMC modeling and the dose rate effect of the Fe-based alloys.

키워드

과제정보

This study is sponsored by the National Key Research and Development Program of China (Grant No.2017YFB0702202). The author Jianyang Li thanks C.S. Becquart and J.P. Balbuena for their kind help on modeling.

참고문헌

  1. Steven J. Zinkle, Jeremy T. Busby, Structural materials for fission & fusion energy, Mater. Today 12 (11) (2009) 12-19, https://doi.org/10.1016/S1369-7021(09)70294-9.
  2. C. English, J. Hyde, in: R. Konings (Ed.), Radiation Damage of Reactor Pressure Vessel Steels, Comprehensive Nuclear Materials, Elsevier, 2012, pp. 151-180.
  3. Junfeng Nie, Yunpeng Liu, Qihao Xie, Zhanli Liu, Study on the irradiation effect of mechanical properties of RPV steels using crystal plasticity model, Nucl. Eng. Technol. 51 (2019) 501-509. https://doi.org/10.1016/j.net.2018.10.020
  4. W.Y. Chen, Y. Miao, J. Gan, M.A. Okuniewski, S.A. Maloy, J.F. Stubbins, Neutron irradiation effects in Fe and Fe-Cr at 300 ℃, Acta Mater. 111 (2016) 407-416. https://doi.org/10.1016/j.actamat.2016.03.060
  5. E. Meslin, B. Radiguet, M. Loyer-Prost, Radiation-induced precipitation in a ferritic model alloy: an experimental and theoretical study, Acta Mater. 61 (2013) 6246-6254. https://doi.org/10.1016/j.actamat.2013.07.008
  6. ASTM: E521-16, Standard Practice for Investigating the Effects of Neutron Radiation Damage Using Charged-Particle Irradiation, 12.02, American society of testing and material, Wes Conshohocken, PA, 2016, https://doi.org/10.1520/E0521-16.
  7. S. Gary, Was, Challenges to the use of ion irradiation for emulating reactor irradiation, J. Mater. Res. 30 (2015) 1158-1182, https://doi.org/10.1557/jmr.2015.73.
  8. G.S. Was, T.R. Allen, Radiation damage from different particle types, in: K.E. Sickafus, E.A. Kotomin, B.P. Uberuaga (Eds.), Radiation Effects in Solids, in NATO Science Series II, vol. 235, Springer, Berlin, 2007, pp. 65-98.
  9. R.E. Stoller, G.R. Odette, B.D. Wirth, Primary damage formation in bcc iron, J. Nucl. Mater. 251 (1997) 49-60. https://doi.org/10.1016/S0022-3115(97)00256-0
  10. K. Fukuya, Irradiation Simulation Techniques for the Study of RPV Embrittlement, Institute of Nuclear Safety System Inc., Japan, 2015, pp. 181-210, https://doi.org/10.1533/9780857096470.3.181.
  11. A. Ballesteros, R. Ahlstrand, C. Bruynooghe, A. Chernobaeva, Y. Kevorkyan, D. Erak, D. Zurko, Irradiation temperature, flux and spectrum effects, Prog. Nucl. Energy 53 (2011) 756-759, https://doi.org/10.1016/j.pnucene.2011.05.022.
  12. Katsuhiko Fujii, Tadakatsu Ohkubo, Koji Fukuy, Effects of solute elements on irradiation hardening and microstructural evolution in low alloy steels, J. Nucl. Mater. 417 (2011) 949-952. https://doi.org/10.1016/j.jnucmat.2010.12.192
  13. Christopher D. Hardie, Ceri A. Williams, Shuo Xu, Steve G. Roberts, Effects of irradiation temperature and dose rate on the mechanical properties of self-ion implanted Fe and Fe-Cr alloys, J. Nucl. Mater. 439 (2013) 33-40. https://doi.org/10.1016/j.jnucmat.2013.03.052
  14. Kristina Lindgren, Magnus Boasen, Krystyna Stiller, Pal EfsingMattias Thuvander, Evolution of precipitation in reactor pressure vessel steel welds under neutron irradiation, J. Nucl. Mater. 488 (2017) 222-230. https://doi.org/10.1016/j.jnucmat.2017.03.019
  15. A. Wagner, F. Bergner, R. Chaouadi, Effect of neutron flux on the characteristics of irradiation-induced nanofeatures and hardening in pressure vessel steels, Acta Mater. 104 (2016) 131-142. https://doi.org/10.1016/j.actamat.2015.11.027
  16. M. Chiapetto, C.S. Becquart, L. Malerba, Simulation of nanostructural evolution under irradiation in Fe-9%Cr-C alloys: an object kinetic Monte Carlo study of the effect of temperature and dose-rate, Nuclear Materials and Energy 9 (2016) 565-570. https://doi.org/10.1016/j.nme.2016.04.009
  17. V. Jansson, L. Malerba, OKMC simulations of Fe-C systems under irradiation: sensitivity studies, J. Nucl. Mater. 452 (2014) 118-124. https://doi.org/10.1016/j.jnucmat.2014.05.011
  18. N. Soneda, S. Ishino, A. Takahashi, K. Dohi, Modeling the microstructural evolution in bcc-Fe during irradiation using kinetic Monte Carlo computer simulation, J. Nucl. Mater. 323 (2003) 169-180. https://doi.org/10.1016/j.jnucmat.2003.08.021
  19. L.K. Mansur, Theory of transitions in dose dependence of radiation effects in structural alloys, J. Nucl. Mater. 206 (1993) 306-323. https://doi.org/10.1016/0022-3115(93)90130-Q
  20. M. Chiapetto, L. Messina, C.S. Becquart, P. Olsson, L. Malerba, Nanostructure evolution of neutron-irradiated reactor pressure vessel steels: revised Object kinetic Monte Carlo model, Nucl. Instrum. Methods Phys. Res., Sect. B 393 (2017) 105-109. https://doi.org/10.1016/j.nimb.2016.09.025
  21. M. Chiapetto, L. Malerba, C.S. Becquart, Nanostructure evolution under irradiation in FeMnNi alloys: a "grey alloy" object kinetic Monte Carlo model, J. Nucl. Mater. 462 (2015) 91-99, https://doi.org/10.1016/j.jnucmat.2015.03.045.
  22. Jianyang Li, Chonghong Zhang, Yitao Yang, Tieshan Wang, Martin-Bragado Ignacio, An object kinetic Monte Carlo simulation for defect evolution of neutron-irradiated reactor pressure vessel steels: carbon sensitive study. Phys. Status Solidi B 2021, 2100149. DOI: 10.1002/pssb.202100149.
  23. S.L. Dudarev, R. Bullough, P.M. Derlet, Effect of the α-γPhase transition on the stability of dislocation loops in bcc iron, Phys. Rev. Lett. 100 (2008), 135503.
  24. Ignacio Martin-Bragado, Antonio Rivera, Gonzalo Valles, Jose LuisGomez-Selles, J. Maria, Caturla, MmonCa, An Object Kinetic Monte Carlo simulator for damage irradiation evolution and defect diffusion, Comput. Phys. Commun. 184 (2013) 2703-2710. https://doi.org/10.1016/j.cpc.2013.07.011
  25. D. Terentyev, I. Martin-Bragado, Evolution of dislocation loops in iron under irradiation: the impact of carbon, Scripta Mater. 97 (2015) 5-8. https://doi.org/10.1016/j.scriptamat.2014.10.021
  26. J.P. Balbuena, M.J. Aliaga, I. Dopico, Insights from atomistic models on loop nucleation and growth in α-Fe thin films under Fe+ 100 keV irradiation, J. Nucl. Mater. 521 (2019) 71-80. https://doi.org/10.1016/j.jnucmat.2019.04.030
  27. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Physiol. 117 (1995) 1-19. https://doi.org/10.1006/jcph.1995.1039
  28. J. Byggmastar, F. Granberg, K. Nordlund, Effects of the short-range repulsive potential on cascade damage in iron, J. Nucl. Mater. 508 (2018) 530-539. https://doi.org/10.1016/j.jnucmat.2018.06.005
  29. J. Marian, B.D. Wirth, J.M. Perlado, Mechanism of formation and growth of <100>interstitial loops in ferritic materials, Phys. Rev. Lett. 88 (2002), 255507.
  30. F. Granberg, J. Byggmastar, A.E. Sand, K. Nordlund, Cascade debris overlap mechanism of <100> dislocation loop formation in Fe and FeCr, Europhys. Lett. 119 (2017), 56003.
  31. Yufeng Du, Kenta Yoshida, Yusuke Shimada, Takeshi Toyama, Koji Inoue, Kazuto Arakawa, Tomoaki Suzudo, J. Konstantinovic, Milan, Robert Gerard, Somei Ohnuki, Yasuyoshi Nagai. In-situ WB-STEM observation of dislocation loop behavior in reactor pressure vessel steel during post-irradiation annealing, Materialia 12 (2020), 100778.
  32. M.-C. Marinica, F. Willaime, J.-P. Crocombette, Irradiation-Induced formation of nanocrystallites with C15 laves phase structure in bcc iron, Phys. Rev. Lett. 108 (2) (2012), 025501.
  33. C. Domain, C.S. Becquart, Solute-<111> interstitial loop interaction in α-Fe: a DFT study, J. Nucl. Mater. 499 (2018) 582-594. https://doi.org/10.1016/j.jnucmat.2017.10.070
  34. D. Terentyev, K. Heinola, A. Bakaev, E.E. Zhurkin, Carbonevacancy interaction controls lattice damage recovery in iron, Scripta Mater. 86 (2014) 9.
  35. E. Meslin, M. Lambrecht, M. Hern andez-Mayoral, F. Bergner, L. Malerba, P. Pareige, B. Radiguet, A. Barbu, D. Gomez-Brice no, A. Ulbricht, A. Almazouzi, Characterization of neutron-irradiated ferritic model alloys and a RPV steel from combined APT, SANS, TEM and PAS analyses, J. Nucl. Mater. 406 (2010) 73-83. https://doi.org/10.1016/j.jnucmat.2009.12.021
  36. N. Soneda, T. Diazde la Rubia, Defect production, annealing kinetics and damage evolution in a-Fe: an atomic-scale computer simulation, Philos. Mag. A 78 (1998) 995.
  37. Jin Gao, Kiyohiro Yabuuchi, Akihiko Kimura, Ion-irradiation hardening and microstructural evolution in F82H and ferritic alloys, J. Nucl. Mater. 515 (2019) 294-302. https://doi.org/10.1016/j.jnucmat.2018.12.047
  38. L. Tan, J.T. Busby, Formulating the strength factor a for improved predictability of radiation hardening, J. Nucl. Mater. 465 (2015) 724-730. https://doi.org/10.1016/j.jnucmat.2015.07.009
  39. D. Terentyev, X. He, G. Bonny, A. Bakaev, E. Zhurkin, L. Malerba, Hardening due to dislocation loop damage in RPV model alloys: role of Mn segregation, J. Nucl. Mater. 457 (2015) 173-181, https://doi.org/10.1016/j.jnucmat.2014.11.023.
  40. M.I. Pascuet, G. Monnet, G. Bonny, E. Martinez, J.J.H. Lim, M.G. Burke, L. Malerba, Solute precipitation on a screw dislocation and its effects on dislocation mobility in bcc Fe, J. Nucl. Mater. 519 (2019) 265-273. https://doi.org/10.1016/j.jnucmat.2019.04.007
  41. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Model. Simulat. Mater. Sci. Eng. 18 (1) (2010), 015012.
  42. Luca Messina, Thomas Schuler, Maylise Nastar, Mihai-Cosmin Marinica, Par Olsson, Solute diffusion by self-interstitial defects and radiation-induced segregation in ferritic Fe-X (X=Cr, Cu, Mn, Ni, P, Si) dilute alloys, Acta Mater. 191 (2020) 166-185.
  43. G. Bonny, D. Terentyev, E.E. Zhurkin, L. Malerba, Monte Carlo study of decorated dislocation loops in FeNiMnCu model alloys, J. Nucl. Mater. 452 (2014) 486-492. https://doi.org/10.1016/j.jnucmat.2014.05.051
  44. M.J. Caturla, N. Soneda, E. Alonso, et al., Comparative study of radiation damage accumulation in Cu and Fe, J. Nucl. Mater. 276 (2000) 13-21. https://doi.org/10.1016/S0022-3115(99)00220-2
  45. Kai Nordlund, Steven J. Zinkle, Andrea E. Sand, Fredric Granberg, Robert S. Averback, Roger Stoller, Tomoaki Suzudo, Lorenzo Malerba, Florian Banhart, William J. Weber, Francois Willaime, Sergei L. Dudarev, David Simeone, Improving atomic displacement and replacement calculations with physically realistic damage models, Nat. Commun. 9 (2018) 1084.
  46. R. Schaeublin, D. Gelles, M. Victoria, Microstructure of irradiated ferritic/martensitic steels in relation to mechanical properties, J. Nucl. Mater. 307-311 (2002) 197-202, https://doi.org/10.1016/S0022-3115(02)01034-6.
  47. M. Hern andez-Mayoral, C. Heintze, E. Onorbe, Transmission electron microscopy investigation of the microstructure of Fe-Cr alloys induced by neutron and ion irradiation at 300 ℃, J. Nucl. Mater. 474 (2016) 88-98. https://doi.org/10.1016/j.jnucmat.2016.03.002
  48. J. Chen, F. Duval, P. Jung, R. Schaublin, N. Gao, M.F. Barthe, Dislocation loops in ultra-high purity Fe(Cr) alloys after 7.2 MeV proton irradiation, J. Nucl. Mater. 503 (2018) 81-90, https://doi.org/10.1016/j.jnucmat.2018.02.042.
  49. J. Xue, R. Hu, G. Bai, et al., Temperature-dependent irradiation-induced clustering in a FeeMneNi alloy, Metall. Mater. Trans. A 52 (2021) 4264-4274. https://doi.org/10.1007/s11661-021-06384-5
  50. Aaron Dunn, Remi Dingreville, Laurent Capolungo, Multiscale simulation of radiation damage accumulation and subsequent hardening in neutron-irradiated α-Fe, Model. Simulat. Mater. Sci. Eng. 24 (2016), 015005.
  51. Jianyang Li, Chonghong Zhang, Yitao Yang, Tieshan Wang, Ignacio Martin-Bragado, Irradiation dose-rate effect in Fe-C system: an Object Kinetic Monte Carlo simulation, J. Nucl. Mater. (2022), 153529.
  52. J. Gao, K. Yabuuchi, A. Kimura, Characterization of ordered dislocation loop raft in Fe3+ irradiated pure iron at 300 ℃, J. Nucl. Mater. 511 (2018) 304-311. https://doi.org/10.1016/j.jnucmat.2018.09.020
  53. M. Hern andez-Mayoral, Z. Yao, M.L. Jenkins, M.A. Kirk, Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 2: damage evolution in thin-foils at high-erdoses, 21, Philos. Mag. A 88 (2008) 2881-2897. https://doi.org/10.1080/14786430802380477
  54. L.L. Horton, J. Bentley, K. Farrell, A TEM study of neutron-irradiated iron, J. Nucl. Mater. 108&109 (1982) 222.
  55. K. Fujii, K. Fukuya, Characterization of defect clusters in ion-irradiated A533B steel, J. Nucl. Mater. 336 (2005) 323-330. https://doi.org/10.1016/j.jnucmat.2004.10.090
  56. A. Prokhodtseva, B. Decamps, R. Schaublin, Comparison between bulk and thin foil ion irradiation of ultra high purity Fe, J. Nucl. Mater. 442 (2013) S786-S789. https://doi.org/10.1016/j.jnucmat.2013.04.032
  57. Hailong Liu, Qiulin Li, Ben Xu, Wei Liu, Guogang Shu, The effect of dislocations on MnNi-rich clusters in self-ion irradiated FeMnNi alloy, J. Nucl. Mater. 519 (2019) 64-73, https://doi.org/10.1016/j.jnucmat.2019.03.017.
  58. L.T. Belkacemi, E. Meslin, J.-P. Crocombette, B. Radiguet, F. Lepretre, B. Decamps, Striking effect of solute elements (Mn, Ni) on radiation-induced segregation/precipitation in iron-based model alloys, J. Nucl. Mater. 548 (2021), 152807.
  59. Benjamin, W. Spencer Jia-Hong Ke, Cluster dynamics modeling of Mn-Ni-Si precipitates coupled with radiation-induced segregation in low-Cu reactor pressure vessel steels, J. Nucl. Mater. 569 (2022), 153910.
  60. O. Tissot, C. Pareige, E. Meslin, B. Decamps, J. Henry, Influence of injected interstitials on a' precipitation in Fe-Cr alloys under self-ion irradiation, Materials Research Letters 5 (2) (2017) 117-123, https://doi.org/10.1080/21663831.2016.1230896.
  61. G.R. Odette, N. Almirall, P.B. Wells, T. Yamamoto, Precipitation in reactor pressure vessel steels under ion and neutron irradiation: on the role of segregated network dislocations, Acta Mater. 212 (2021), 116922.
  62. K. Fujii, K. Fukuya, T. Hojo, Concomitant formation of different nature clusters and hardening in reactor pressure vessel steels irradiated by heavy ions, J. Nucl. Mater. 443 (2013) 378-385. https://doi.org/10.1016/j.jnucmat.2013.07.056
  63. Qi Chen, Rong Hu, Dekui Mu, Shenbao Jin, Fei Xue, Gang Sha, Irradiation-induced clustering in a Fe-Mn-Si alloy at different doses and temperatures, J. Nucl. Mater. 557 (2021), 153237.
  64. Aaron Dunn, Brittany Muntifering, Remi Dingreville, Khalid Hattar, Laurent Capolungo, Displacement rate and temperature equivalence in stochastic cluster dynamics simulations of irradiated pure α-Fe, J. Nucl. Mater. 480 (2016) 129-137. https://doi.org/10.1016/j.jnucmat.2016.08.018
  65. Shipeng Shu, Peter B. Wells, G. Robert Odette, Dane Morgan, A kinetic lattice Monte Carlo study of post-irradiation annealing of model reactor pressure vessel steels, J. Nucl. Mater. 524 (2019) 312-322. https://doi.org/10.1016/j.jnucmat.2019.07.018
  66. N. Almirall, P.B. Wells, H. Ke, P. Edmondson, D. Morgan, T. Yamamoto, G.R. Odette, On the elevated temperature thermal stability of nanoscale MnNi-Si precipitates formed at lower temperature in highly irradiated reactor pressure vessel steels, Sci. Rep. 9 (2019) 1-12. https://doi.org/10.1038/s41598-018-37186-2
  67. S.J. Zinkle, L.L. Snead, Opportunities and limitations for ion beams in radiation effects studies: bridging critical gaps between charged particle and neutron irradiations, Scripta Mater. 143 (2018) 154-160. https://doi.org/10.1016/j.scriptamat.2017.06.041
  68. K. Vogel, P. Chekhonin, C. Kaden, M. Hernandez-Mayoral, S. Akhmadaliev, F. Bergner, Depth distribution of irradiation-induced dislocation loops in an Fe-9Cr model alloy irradiated with Fe ions: the effect of ion energy, Nucl. Mater. Energy 27 (2021), 101007.