DOI QR코드

DOI QR Code

Research on ANN based on Simulated Annealing in Parameter Optimization of Micro-scaled Flow Channels Electrochemical Machining

미세 유동채널의 전기화학적 가공 파라미터 최적화를 위한 어닐링 시뮬레이션에 근거한 인공 뉴럴 네트워크에 관한 연구

  • Byung-Won Min (Department of Game Software Engineering, Mokwon University)
  • 민병원 (목원대학교 게임소프트웨어공학과)
  • Received : 2023.03.31
  • Accepted : 2023.05.29
  • Published : 2023.06.30

Abstract

In this paper, an artificial neural network based on simulated annealing was constructed. The mapping relationship between the parameters of micro-scaled flow channels electrochemical machining and the channel shape was established by training the samples. The depth and width of micro-scaled flow channels electrochemical machining on stainless steel surface were predicted, and the flow channels experiment was carried out with pulse power supply in NaNO3 solution to verify the established network model. The results show that the depth and width of the channel predicted by the simulated annealing artificial neural network with "4-7-2" structure are very close to the experimental values, and the error is less than 5.3%. The predicted and experimental data show that the etching degree in the process of channels electrochemical machining is closely related to voltage and current density. When the voltage is less than 5V, a "small island" is formed in the channel; When the voltage is greater than 40V, the lateral etching of the channel is relatively large, and the "dam" between the channels disappears. When the voltage is 25V, the machining morphology of the channel is the best.

논문에서는 어닐링 시뮬레이션에 근거한 인공 뉴럴 네트워크를 구축한다. 미세 유동채널의 전기화학적 가공 파라미터와 채널 형태 간의 매핑은 샘플의 학습에 의하여 이루어진다. 스텐리스강 표면에 대한 미세 유동채널의 전기화학적 가공의 깊이와 넓이가 예측되고, 형성된 네트워크 모델을 입증하기 위한 NaNO3 해 내부의 펄스 전원공급기와 함께 유동채널의 실험이 진행된다. 결과적으로, "4-7-2" 구조를 갖는 인공 뉴럴 네트워크에 의한 어닐링 시뮬레이션으로 예측된 채널의 깊이와 넓이는 실험값에 매우 근접한다. 그 오차는 5.3% 미만이다. 예측된 데이터와 실험 데이터는 전기화학적 가공 과정에서의 에칭 규격이 전압 및 전류의 밀도와 매우 밀접한 관계가 있음을 보여준다. 전압이 5V보다 작을 때에는 채널 내에 "작은 섬"이 형성된다; 반면에 전압이 40V보다 클 때에는 채널의 측면 에칭이 비교적 크고 채널 사이의 "댐"은 사라지게 된다. 전압이 25V일 때 채널의 가공 형태는 최적이 된다.

Keywords

References

  1. J.A.Mcgeough, M.C.Leu and K.P.Rajurkar, "Electroforming Process and Application to Micro/Macro Manufacturing,", CIRP Annals,Vol.50, No.2, pp.499-514, 2001. https://doi.org/10.1016/S0007-8506(07)62990-4
  2. P.M.Hernandez-Castellano, A.N.Benitez-Vega and N.Diaz-Padilla, "Design and manufacture of structured surfaces by electroforming," Procedia Manufacturing, Vol.13, pp.402-409, 2017. https://doi.org/10.1016/j.promfg.2017.09.030
  3. K.K.Saxena and J.Qian, "Review on process capabilities of electrochemical micromachining and its hybrid variants," International Journal of Machine Tools and Manufacture, Vol.127, pp.28-56, 2018. https://doi.org/10.1016/j.ijmachtools.2018.01.004
  4. B.Y.Jiang, C.Weng and M.Y.Zhou, "Improvement of thickness deposition uniformity in nickel electroforming for micro mold inserts," Journal of Central South University, Vol.23, No.10, pp.2536-2541, 2016. https://doi.org/10.1007/s11771-016-3314-7
  5. J.H.Ren, Z.W.Zhu amd D.Zhu, "Effects of process parameters on mechanical properties of abrasive-assisted electroformed nickel," Chinese Journal of Aeronautics, Vol.29, No.4, pp.1096-1102, 2016. https://doi.org/10.1016/j.cja.2016.05.001
  6. J.Han, B.S.Lee, J.S.Lim, S.M.Kim, H.S.Kim amd S.L.Kang, "Elimination of nanovoids induced during electroforming of metallic nanostamps with high-aspect-ratio nanostructures by the pulse reverse current electroforming process," JOURNAL OF MICROMECHANICS AND MICROENGINEERING, Vol.22, No.16, pp.1-10, 2012. https://doi.org/10.1088/0960-1317/22/6/065004
  7. Q.D.Cao, L.Fang, J.M.Lv, X.P.Zhang and T.D.Nguyen, "Effects of pulse reverse electroforming parameters on the thickness uniformity of electroformed copper foil," TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING, Vol.96, No.2, pp.108-112, 2018. https://doi.org/10.1080/00202967.2018.1423736
  8. P.C.Huang, K.H.Hou, H.H.Sheu, M.D.Ger and G.L.Wang, "Wear properties of Ni-Mo coatings produced by pulse electroforming," SURFACE & COATINGS TECHNOLOGY, Vol.258, pp.639-645, 2014. https://doi.org/10.1016/j.surfcoat.2014.08.024
  9. X.Yuan, W.Wang, D.Sun and H.Yu, "Influence of pulse parameters on the microstructure and microhardness of nickel electrodeposits," Surface & Coatings Technology, Vol.202, pp.1895-1903, 2008. https://doi.org/10.1016/j.surfcoat.2007.08.023
  10. X.Fafen, X.Huibin, L.Chao, J.Wang and J.Ding, "Microstructures of Ni-AlN composite coatings prepared by pulse electrodeposition," Technology.Applied Surface Science, Vol.271, pp.7-11, 2013. https://doi.org/10.1016/j.apsusc.2012.12.064
  11. S.A.Lajevardi and T.Shahrabi, "Effects of pulse electrodeposition parameters on the properties of Ni-TiO2 nanocomposite coatings," Applied Surface Science, Vol.256, pp.6775-6781, 2010.
  12. M.E.Bahrololoom and R.Sani, "The influence of pulse plating parameters on the hardness and wear resistance of nickel-alumina composite coatings," Surf Coat Tech, Vol.192, pp.154-163, 2005. https://doi.org/10.1016/j.surfcoat.2004.09.023
  13. W.Cui, Y.H.Zhang, R.X.Song and P.Wang, "Ultrasonic assisted pulse electrodeposited Ni-doped TiN coatings," Ceram Int, Vol.44, pp.14767-14773, 2018. https://doi.org/10.1016/j.ceramint.2018.05.106
  14. J.Deng, "Design and Implementation of Digital Process Management System for Vehicle Manufacturing Based on DRF," Agricultural Equipment &Vehicle Engineering, Vol.59, No.11, pp.153-156, 2021.
  15. K.J.He, W.W.Ji and L.Z.Liu, "Design and Realization of Internal Combustion Engine Manufacturing Process Management System," Internal Combustion Engine & Parts, Vol.2022, No.3, pp.166-168, 2022.
  16. K.Miao, X.M.Guo and X.M.Su, "A method of hexagonal lattice terrain quantification under production rules," Journal of Surveying and Mapping Science and Technology, Vol.32, No.1, pp.96-100, 2016.