DOI QR코드

DOI QR Code

Understanding the Pathophysiology and Magnetic Resonance Imaging of Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders

  • Laura Cacciaguerra (Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute) ;
  • Maria A. Rocca (Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute) ;
  • Massimo Filippi (Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute)
  • Received : 2023.04.26
  • Accepted : 2023.08.21
  • Published : 2023.12.01

Abstract

Magnetic resonance imaging (MRI) has been extensively applied in the study of multiple sclerosis (MS), substantially contributing to diagnosis, differential diagnosis, and disease monitoring. MRI studies have significantly contributed to the understanding of MS through the characterization of typical radiological features and their clinical or prognostic implications using conventional MRI pulse sequences and further with the application of advanced imaging techniques sensitive to microstructural damage. Interpretation of results has often been validated by MRI-pathology studies. However, the application of MRI techniques in the study of neuromyelitis optica spectrum disorders (NMOSD) remains an emerging field, and MRI studies have focused on radiological correlates of NMOSD and its pathophysiology to aid in diagnosis, improve monitoring, and identify relevant prognostic factors. In this review, we discuss the main contributions of MRI to the understanding of MS and NMOSD, focusing on the most novel discoveries to clarify differences in the pathophysiology of focal inflammation initiation and perpetuation, involvement of normal-appearing tissue, potential entry routes of pathogenic elements into the CNS, and existence of primary or secondary mechanisms of neurodegeneration.

Keywords

References

  1. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018;17:162-173  https://doi.org/10.1016/S1474-4422(17)30470-2
  2. Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015;85:177-189  https://doi.org/10.1212/WNL.0000000000001729
  3. Kleiter I, Gahlen A, Borisow N, Fischer K, Wernecke KD, Wegner B, et al. Neuromyelitis optica: evaluation of 871 attacks and 1,153 treatment courses. Ann Neurol 2016;79:206-216  https://doi.org/10.1002/ana.24554
  4. Wingerchuk DM, Hogancamp WF, O'Brien PC, Weinshenker BG. The clinical course of neuromyelitis optica (Devic's syndrome). Neurology 1999;53:1107-1114  https://doi.org/10.1212/WNL.53.5.1107
  5. Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, et al. Multiple sclerosis. Nat Rev Dis Primers 2018;4:43 
  6. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004;364:2106-2112  https://doi.org/10.1016/S0140-6736(04)17551-X
  7. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005;202:473-477  https://doi.org/10.1084/jem.20050304
  8. Papadopoulos MC, Verkman AS. Aquaporin 4 and neuromyelitis optica. Lancet Neurol 2012;11:535-544  https://doi.org/10.1016/S1474-4422(12)70133-3
  9. Traboulsee A, Simon JH, Stone L, Fisher E, Jones DE, Malhotra A, et al. Revised recommendations of the consortium of MS centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. AJNR Am J Neuroradiol 2016;37:394-401  https://doi.org/10.3174/ajnr.A4539
  10. Wattjes MP, Ciccarelli O, Reich DS, Banwell B, de Stefano N, Enzinger C, et al. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 2021;20:653-670  https://doi.org/10.1016/S1474-4422(21)00095-8
  11. Vrenken H, Jenkinson M, Horsfield MA, Battaglini M, van Schijndel RA, Rostrup E, et al. Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis. J Neurol 2013;260:2458-2471  https://doi.org/10.1007/s00415-012-6762-5
  12. Lee MY, Yong KP, Hyun JW, Kim SH, Lee SH, Kim HJ. Incidence of interattack asymptomatic brain lesions in NMO spectrum disorder. Neurology 2020;95:e3124-e3128  https://doi.org/10.1212/WNL.0000000000010847
  13. Filippi M, Yousry T, Baratti C, Horsfield MA, Mammi S, Becker C, et al. Quantitative assessment of MRI lesion load in multiple sclerosis. A comparison of conventional spin-echo with fast fluid-attenuated inversion recovery. Brain 1996;119(Pt 4):1349-1355  https://doi.org/10.1093/brain/119.4.1349
  14. Sahraian MA, Radue EW, Haller S, Kappos L. Black holes in multiple sclerosis: definition, evolution, and clinical correlations. Acta Neurol Scand 2010;122:1-8  https://doi.org/10.1111/j.1600-0404.2010.01367.x
  15. van Waesberghe JH, Kamphorst W, De Groot CJ, van Walderveen MA, Castelijns JA, Ravid R, et al. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol 1999;46:747-754  https://doi.org/10.1002/1531-8249(199911)46:5<747::AID-ANA10>3.0.CO;2-4
  16. Filippi M, Preziosa P, Banwell BL, Barkhof F, Ciccarelli O, De Stefano N, et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain 2019;142:1858-1875  https://doi.org/10.1093/brain/awz144
  17. Filippi M, Bruck W, Chard D, Fazekas F, Geurts JJG, Enzinger C, et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol 2019;18:198-210  https://doi.org/10.1016/S1474-4422(18)30451-4
  18. Calabrese M, Battaglini M, Giorgio A, Atzori M, Bernardi V, Mattisi I, et al. Imaging distribution and frequency of cortical lesions in patients with multiple sclerosis. Neurology 2010;75:1234-1240  https://doi.org/10.1212/WNL.0b013e3181f5d4da
  19. Geurts JJ, Roosendaal SD, Calabrese M, Ciccarelli O, Agosta F, Chard DT, et al. Consensus recommendations for MS cortical lesion scoring using double inversion recovery MRI. Neurology 2011;76:418-424  https://doi.org/10.1212/WNL.0b013e31820a0cc4
  20. Calabrese M, Agosta F, Rinaldi F, Mattisi I, Grossi P, Favaretto A, et al. Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch Neurol 2009;66:1144-1150  https://doi.org/10.1001/archneurol.2009.174
  21. Scalfari A, Romualdi C, Nicholas RS, Mattoscio M, Magliozzi R, Morra A, et al. The cortical damage, early relapses, and onset of the progressive phase in multiple sclerosis. Neurology 2018;90:e2107-e2118  https://doi.org/10.1212/WNL.0000000000005685
  22. Pittock SJ, Lennon VA, Krecke K, Wingerchuk DM, Lucchinetti CF, Weinshenker BG. Brain abnormalities in neuromyelitis optica. Arch Neurol 2006;63:390-396  https://doi.org/10.1001/archneur.63.3.390
  23. Kim SH, Kim W, Li XF, Jung IJ, Kim HJ. Clinical spectrum of CNS aquaporin-4 autoimmunity. Neurology 2012;78:1179-1185  https://doi.org/10.1212/WNL.0b013e31824f8069
  24. Huh SY, Min JH, Kim W, Kim SH, Kim HJ, Kim BJ, et al. The usefulness of brain MRI at onset in the differentiation of multiple sclerosis and seropositive neuromyelitis optica spectrum disorders. Mult Scler 2014;20:695-704  https://doi.org/10.1177/1352458513506953
  25. Kim HJ, Paul F, Lana-Peixoto MA, Tenembaum S, Asgari N, Palace J, et al. MRI characteristics of neuromyelitis optica spectrum disorder: an international update. Neurology 2015;84:1165-1173  https://doi.org/10.1212/WNL.0000000000001367
  26. Cacciaguerra L, Morris P, Tobin WO, Chen JJ, Banks SA, Elsbernd P, et al. Tumefactive demyelination in MOG Ab-associated disease, multiple sclerosis, and AQP-4-IgG-positive neuromyelitis optica spectrum disorder. Neurology 2023;100:e1418-e1432 
  27. Calabrese M, Oh MS, Favaretto A, Rinaldi F, Poretto V, Alessio S, et al. No MRI evidence of cortical lesions in neuromyelitis optica. Neurology 2012;79:1671-1676  https://doi.org/10.1212/WNL.0b013e31826e9a96
  28. Cacciaguerra L, Meani A, Mesaros S, Radaelli M, Palace J, Dujmovic-Basuroski I, et al. Brain and cord imaging features in neuromyelitis optica spectrum disorders. Ann Neurol 2019;85:371-384  https://doi.org/10.1002/ana.25411
  29. Sinnecker T, Dorr J, Pfueller CF, Harms L, Ruprecht K, Jarius S, et al. Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology 2012;79:708-714  https://doi.org/10.1212/WNL.0b013e3182648bc8
  30. Saji E, Arakawa M, Yanagawa K, Toyoshima Y, Yokoseki A, Okamoto K, et al. Cognitive impairment and cortical degeneration in neuromyelitis optica. Ann Neurol 2013;73:65-76  https://doi.org/10.1002/ana.23721
  31. Tahara M, Ito R, Tanaka K, Tanaka M. Cortical and leptomeningeal involvement in three cases of neuromyelitis optica. Eur J Neurol 2012;19:e47-e48  https://doi.org/10.1111/j.1468-1331.2012.03667.x
  32. Kim W, Lee JE, Kim SH, Huh SY, Hyun JW, Jeong IH, et al. Cerebral cortex involvement in neuromyelitis optica spectrum disorder. J Clin Neurol 2016;12:188-193  https://doi.org/10.3988/jcn.2016.12.2.188
  33. Matthews L, Marasco R, Jenkinson M, Kuker W, Luppe S, Leite MI, et al. Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution. Neurology 2013;80:1330-1337  https://doi.org/10.1212/WNL.0b013e3182887957
  34. Juryn'czyk M, Tackley G, Kong Y, Geraldes R, Matthews L, Woodhall M, et al. Brain lesion distribution criteria distinguish MS from AQP4-antibody NMOSD and MOG-antibody disease. J Neurol Neurosurg Psychiatry 2017;88:132-136  https://doi.org/10.1136/jnnp-2016-314005
  35. Sormani MP, Bruzzi P. MRI lesions as a surrogate for relapses in multiple sclerosis: a meta-analysis of randomised trials. Lancet Neurol 2013;12:669-676  https://doi.org/10.1016/S1474-4422(13)70103-0
  36. Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 2004;55:458-468  https://doi.org/10.1002/ana.20016
  37. Sati P, Oh J, Constable RT, Evangelou N, Guttmann CR, Henry RG, et al. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat Rev Neurol 2016;12:714-722  https://doi.org/10.1038/nrneurol.2016.166
  38. Maggi P, Absinta M, Grammatico M, Vuolo L, Emmi G, Carlucci G, et al. Central vein sign differentiates multiple sclerosis from central nervous system inflammatory vasculopathies. Ann Neurol 2018;83:283-294  https://doi.org/10.1002/ana.25146
  39. Mistry N, Abdel-Fahim R, Samaraweera A, Mougin O, Tallantyre E, Tench C, et al. Imaging central veins in brain lesions with 3-T T2*-weighted magnetic resonance imaging differentiates multiple sclerosis from microangiopathic brain lesions. Mult Scler 2016;22:1289-1296  https://doi.org/10.1177/1352458515616700
  40. Sinnecker T, Clarke MA, Meier D, Enzinger C, Calabrese M, De Stefano N, et al. Evaluation of the central vein sign as a diagnostic imaging biomarker in multiple sclerosis. JAMA Neurol 2019;76:1446-1456  https://doi.org/10.1001/jamaneurol.2019.2478
  41. Cortese R, Magnollay L, Tur C, Abdel-Aziz K, Jacob A, De Angelis F, et al. Value of the central vein sign at 3T to differentiate MS from seropositive NMOSD. Neurology 2018;90:e1183-e1190  https://doi.org/10.1212/WNL.0000000000005256
  42. Cortese R, Prados Carrasco F, Tur C, Bianchi A, Brownlee W, De Angelis F, et al. Differentiating multiple sclerosis from AQP4-neuromyelitis optica spectrum disorder and MOG-antibody disease with imaging. Neurology 2023;100:e308-e323  https://doi.org/10.1212/WNL.0000000000201465
  43. Solomon AJ, Watts R, Ontaneda D, Absinta M, Sati P, Reich DS. Diagnostic performance of central vein sign for multiple sclerosis with a simplified three-lesion algorithm. Mult Scler 2018;24:750-757  https://doi.org/10.1177/1352458517726383
  44. Kister I, Herbert J, Zhou Y, Ge Y. Ultrahigh-field MR (7T) imaging of brain lesions in neuromyelitis optica. Mult Scler Int 2013;2013:398259 
  45. Pittock SJ, Weinshenker BG, Lucchinetti CF, Wingerchuk DM, Corboy JR, Lennon VA. Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Arch Neurol 2006;63:964-968  https://doi.org/10.1001/archneur.63.7.964
  46. Cacciaguerra L, Storelli L, Pagani E, Martinelli V, Moiola L, Filippi M, et al. Spatial association between gene expression and brain damage in neuromyelitis optica spectrum disorders (S50.004). Neurology 2023;100(17 Supplement 2):2190 
  47. Wuerfel J, Bellmann-Strobl J, Brunecker P, Aktas O, McFarland H, Villringer A, et al. Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain 2004;127(Pt 1):111-119  https://doi.org/10.1093/brain/awh007
  48. Werring DJ, Brassat D, Droogan AG, Clark CA, Symms MR, Barker GJ, et al. The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: a serial diffusion MRI study. Brain 2000;123(Pt 8):1667-1676  https://doi.org/10.1093/brain/123.8.1667
  49. Rocca MA, Cercignani M, Iannucci G, Comi G, Filippi M. Weekly diffusion-weighted imaging of normal-appearing white matter in MS. Neurology 2000;55:882-884  https://doi.org/10.1212/WNL.55.6.882
  50. Filippi M, Rocca MA, Martino G, Horsfield MA, Comi G. Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 1998;43:809-814  https://doi.org/10.1002/ana.410430616
  51. Narayana PA, Doyle TJ, Lai D, Wolinsky JS. Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol 1998;43:56-71  https://doi.org/10.1002/ana.410430112
  52. Tartaglia MC, Narayanan S, De Stefano N, Arnaoutelis R, Antel SB, Francis SJ, et al. Choline is increased in pre-lesional normal appearing white matter in multiple sclerosis. J Neurol 2002;249:1382-1390  https://doi.org/10.1007/s00415-002-0846-6
  53. Filippi M, Agosta F. Magnetization transfer MRI in multiple sclerosis. J Neuroimaging 2007;17(Suppl 1):22S-26S  https://doi.org/10.1111/j.1552-6569.2007.00132.x
  54. Davie CA, Hawkins CP, Barker GJ, Brennan A, Tofts PS, Miller DH, et al. Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 1994;117(Pt 1):49-58  https://doi.org/10.1093/brain/117.1.49
  55. De Stefano N, Matthews PM, Antel JP, Preul M, Francis G, Arnold DL. Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 1995;38:901-909  https://doi.org/10.1002/ana.410380610
  56. Naismith RT, Xu J, Tutlam NT, Scully PT, Trinkaus K, Snyder AZ, et al. Increased diffusivity in acute multiple sclerosis lesions predicts risk of black hole. Neurology 2010;74:1694-1701  https://doi.org/10.1212/WNL.0b013e3181e042c4
  57. Rovira A, Pericot I, Alonso J, Rio J, Grive E, Montalban X. Serial diffusion-weighted MR imaging and proton MR spectroscopy of acute large demyelinating brain lesions: case report. AJNR Am J Neuroradiol 2002;23:989-994 
  58. Fox RJ, Cronin T, Lin J, Wang X, Sakaie K, Ontaneda D, et al. Measuring myelin repair and axonal loss with diffusion tensor imaging. AJNR Am J Neuroradiol 2011;32:85-91  https://doi.org/10.3174/ajnr.A2238
  59. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998;338:278-285  https://doi.org/10.1056/NEJM199801293380502
  60. Chen JT, Collins DL, Atkins HL, Freedman MS, Arnold DL; Canadian MS/BMT Study Group. Magnetization transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesions. Ann Neurol 2008;63:254-262  https://doi.org/10.1002/ana.21302
  61. Sechi E, Krecke KN, Messina SA, Buciuc M, Pittock SJ, Chen JJ, et al. Comparison of MRI lesion evolution in different central nervous system demyelinating disorders. Neurology 2021;97:e1097-e1109  https://doi.org/10.1212/WNL.0000000000012467
  62. Schneider T, Brownlee W, Zhang H, Ciccarelli O, Miller DH, Wheeler-Kingshott CG. Sensitivity of multi-shell NODDI to multiple sclerosis white matter changes: a pilot study. Funct Neurol 2017;32:97-101  https://doi.org/10.11138/FNeur/2017.32.2.097
  63. Rahmanzadeh R, Lu PJ, Barakovic M, Weigel M, Maggi P, Nguyen TD, et al. Myelin and axon pathology in multiple sclerosis assessed by myelin water and multi-shell diffusion imaging. Brain 2021;144:1684-1696  https://doi.org/10.1093/brain/awab088
  64. Kato S, Hagiwara A, Yokoyama K, Andica C, Tomizawa Y, Hoshino Y, et al. Microstructural white matter abnormalities in multiple sclerosis and neuromyelitis optica spectrum disorders: evaluation by advanced diffusion imaging. J Neurol Sci 2022;436:120205 
  65. Frischer JM, Weigand SD, Guo Y, Kale N, Parisi JE, Pirko I, et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol 2015;78:710-721  https://doi.org/10.1002/ana.24497
  66. Absinta M, Sati P, Schindler M, Leibovitch EC, Ohayon J, Wu T, et al. Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J Clin Invest 2016;126:2597-2609  https://doi.org/10.1172/JCI86198
  67. Dal-Bianco A, Grabner G, Kronnerwetter C, Weber M, Hoftberger R, Berger T, et al. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol 2017;133:25-42  https://doi.org/10.1007/s00401-016-1636-z
  68. Chen W, Gauthier SA, Gupta A, Comunale J, Liu T, Wang S, et al. Quantitative susceptibility mapping of multiple sclerosis lesions at various ages. Radiology 2014;271:183-192  https://doi.org/10.1148/radiol.13130353
  69. Preziosa P, Pagani E, Meani A, Moiola L, Rodegher M, Filippi M, et al. Slowly expanding lesions predict 9-year multiple sclerosis disease progression. Neurol Neuroimmunol Neuroinflamm 2022;9:e1139 
  70. Elliott C, Wolinsky JS, Hauser SL, Kappos L, Barkhof F, Bernasconi C, et al. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult Scler 2019;25:1915-1925  https://doi.org/10.1177/1352458518814117
  71. Absinta M, Sati P, Masuzzo F, Nair G, Sethi V, Kolb H, et al. Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol 2019;76:1474-1483  https://doi.org/10.1001/jamaneurol.2019.2399
  72. Dal-Bianco A, Grabner G, Kronnerwetter C, Weber M, Kornek B, Kasprian G, et al. Long-term evolution of multiple sclerosis iron rim lesions in 7 T MRI. Brain 2021;144:833-847  https://doi.org/10.1093/brain/awaa436
  73. Cacciaguerra L, Rocca MA, Storelli L, Radaelli M, Filippi M. Mapping white matter damage distribution in neuromyelitis optica spectrum disorders with a multimodal MRI approach. Mult Scler 2021;27:841-854  https://doi.org/10.1177/1352458520941493
  74. Klawiter EC, Xu J, Naismith RT, Benzinger TL, Shimony JS, Lancia S, et al. Increased radial diffusivity in spinal cord lesions in neuromyelitis optica compared with multiple sclerosis. Mult Scler 2012;18:1259-1268  https://doi.org/10.1177/1352458512436593
  75. Chawla S, Kister I, Wuerfel J, Brisset JC, Liu S, Sinnecker T, et al. Iron and non-iron-related characteristics of multiple sclerosis and neuromyelitis optica lesions at 7T MRI. AJNR Am J Neuroradiol 2016;37:1223-1230  https://doi.org/10.3174/ajnr.A4729
  76. Clarke MA, Pareto D, Pessini-Ferreira L, Arrambide G, Alberich M, Crescenzo F, et al. Value of 3T susceptibility-weighted imaging in the diagnosis of multiple sclerosis. AJNR Am J Neuroradiol 2020;41:1001-1008  https://doi.org/10.3174/ajnr.A6547
  77. Poonawalla AH, Hasan KM, Gupta RK, Ahn CW, Nelson F, Wolinsky JS, et al. Diffusion-tensor MR imaging of cortical lesions in multiple sclerosis: initial findings. Radiology 2008;246:880-886  https://doi.org/10.1148/radiol.2463070486
  78. Calabrese M, Rinaldi F, Seppi D, Favaretto A, Squarcina L, Mattisi I, et al. Cortical diffusion-tensor imaging abnormalities in multiple sclerosis: a 3-year longitudinal study. Radiology 2011;261:891-898  https://doi.org/10.1148/radiol.11110195
  79. Filippi M, Preziosa P, Pagani E, Copetti M, Mesaros S, Colombo B, et al. Microstructural magnetic resonance imaging of cortical lesions in multiple sclerosis. Mult Scler 2013;19:418-426  https://doi.org/10.1177/1352458512457842
  80. Yaldizli O, Pardini M, Sethi V, Muhlert N, Liu Z, Tozer DJ, et al. Characteristics of lesional and extra-lesional cortical grey matter in relapsing-remitting and secondary progressive multiple sclerosis: a magnetisation transfer and diffusion tensor imaging study. Mult Scler 2016;22:150-159  https://doi.org/10.1177/1352458515586085
  81. Preziosa P, Pagani E, Morelli ME, Copetti M, Martinelli V, Pirro F, et al. DT MRI microstructural cortical lesion damage does not explain cognitive impairment in MS. Mult Scler 2017;23:1918-1928  https://doi.org/10.1177/1352458516689147
  82. Jonkman LE, Klaver R, Fleysher L, Inglese M, Geurts JJ. The substrate of increased cortical FA in MS: a 7T post-mortem MRI and histopathology study. Mult Scler 2016;22:1804-1811  https://doi.org/10.1177/1352458516635290
  83. Preziosa P, Kiljan S, Steenwijk MD, Meani A, van de Berg WDJ, Schenk GJ, et al. Axonal degeneration as substrate of fractional anisotropy abnormalities in multiple sclerosis cortex. Brain 2019;142:1921-1937  https://doi.org/10.1093/brain/awz143
  84. Preziosa P, Pagani E, Bonacchi R, Cacciaguerra L, Falini A, Rocca MA, et al. In vivo detection of damage in multiple sclerosis cortex and cortical lesions using NODDI. J Neurol Neurosurg Psychiatry 2022;93:628-636  https://doi.org/10.1136/jnnp-2021-327803
  85. Fukutomi H, Glasser MF, Zhang H, Autio JA, Coalson TS, Okada T, et al. Neurite imaging reveals microstructural variations in human cerebral cortical gray matter. Neuroimage 2018;182:488-499  https://doi.org/10.1016/j.neuroimage.2018.02.017
  86. Grussu F, Schneider T, Tur C, Yates RL, Tachrount M, Ianus, A, et al. Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology? Ann Clin Transl Neurol 2017;4:663-679  https://doi.org/10.1002/acn3.445
  87. Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G. Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 2001;56:304-311  https://doi.org/10.1212/WNL.56.3.304
  88. Preziosa P, Rocca MA, Mesaros S, Pagani E, Stosic-Opincal T, Kacar K, et al. Intrinsic damage to the major white matter tracts in patients with different clinical phenotypes of multiple sclerosis: a voxelwise diffusion-tensor MR study. Radiology 2011;260:541-550  https://doi.org/10.1148/radiol.11110315
  89. Rocca MA, Absinta M, Amato MP, Moiola L, Ghezzi A, Veggiotti P, et al. Posterior brain damage and cognitive impairment in pediatric multiple sclerosis. Neurology 2014;82:1314-1321  https://doi.org/10.1212/WNL.0000000000000309
  90. Ciccarelli O, Werring DJ, Barker GJ, Griffin CM, Wheeler-Kingshott CA, Miller DH, et al. A study of the mechanisms of normal-appearing white matter damage in multiple sclerosis using diffusion tensor imaging--evidence of Wallerian degeneration. J Neurol 2003;250:287-292  https://doi.org/10.1007/s00415-003-0992-5
  91. Mariano R, Messina S, Roca-Fernandez A, Leite MI, Kong Y, Palace JA. Quantitative spinal cord MRI in MOG-antibody disease, neuromyelitis optica and multiple sclerosis. Brain 2021;144:198-212  https://doi.org/10.1093/brain/awaa347
  92. Preziosa P, Pagani E, Meani A, Marchesi O, Conti L, Falini A, et al. NODDI, diffusion tensor microstructural abnormalities and atrophy of brain white matter and gray matter contribute to cognitive impairment in multiple sclerosis. J Neurol 2023;270:810-823 
  93. Liu Y, Duan Y, He Y, Yu C, Wang J, Huang J, et al. A tract-based diffusion study of cerebral white matter in neuromyelitis optica reveals widespread pathological alterations. Mult Scler 2012;18:1013-1021  https://doi.org/10.1177/1352458511431731
  94. Pichiecchio A, Tavazzi E, Poloni G, Ponzio M, Palesi F, Pasin M, et al. Advanced magnetic resonance imaging of neuromyelitis optica: a multiparametric approach. Mult Scler 2012;18:817-824  https://doi.org/10.1177/1352458511431072
  95. Aboul-Enein F, Krssak M, Hoftberger R, Prayer D, Kristoferitsch W. Diffuse white matter damage is absent in neuromyelitis optica. AJNR Am J Neuroradiol 2010;31:76-79  https://doi.org/10.3174/ajnr.A1791
  96. Brown JW, Pardini M, Brownlee WJ, Fernando K, Samson RS, Prados Carrasco F, et al. An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis. Brain 2017;140:387-398  https://doi.org/10.1093/brain/aww296
  97. Pirpamer L, Kincses B, Kincses ZT, Kiss C, Damulina A, Khalil M, et al. Periventricular magnetisation transfer abnormalities in early multiple sclerosis. Neuroimage Clin 2022;34:103012 
  98. Liu Z, Pardini M, Yaldizli O, Sethi V, Muhlert N, Wheeler-Kingshott CA, et al. Magnetization transfer ratio measures in normal-appearing white matter show periventricular gradient abnormalities in multiple sclerosis. Brain 2015;138(Pt 5):1239-1246  https://doi.org/10.1093/brain/awv065
  99. Pardini M, Gualco L, Bommarito G, Roccatagliata L, Schiavi S, Solaro C, et al. CSF oligoclonal bands and normal appearing white matter periventricular damage in patients with clinically isolated syndrome suggestive of MS. Mult Scler Relat Disord 2019;31:93-96  https://doi.org/10.1016/j.msard.2019.03.027
  100. De Meo E, Storelli L, Moiola L, Ghezzi A, Veggiotti P, Filippi M, et al. In vivo gradients of thalamic damage in paediatric multiple sclerosis: a window into pathology. Brain 2021;144:186-197  https://doi.org/10.1093/brain/awaa379
  101. Fadda G, Brown RA, Magliozzi R, Aubert-Broche B, O'Mahony J, Shinohara RT, et al. A surface-in gradient of thalamic damage evolves in pediatric multiple sclerosis. Ann Neurol 2019;85:340-351  https://doi.org/10.1002/ana.25429
  102. Mainero C, Louapre C, Govindarajan ST, Gianni C, Nielsen AS, Cohen-Adad J, et al. A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging. Brain 2015;138:932-945  https://doi.org/10.1093/brain/awv011
  103. Pardini M, Brown JWL, Magliozzi R, Reynolds R, Chard DT. Surface-in pathology in multiple sclerosis: a new view on pathogenesis? Brain 2021;144:1646-1654  https://doi.org/10.1093/brain/awab025
  104. Guo Y, Lennon VA, Parisi JE, Popescu B, Vasquez C, Pittock SJ, et al. Spectrum of sublytic astrocytopathy in neuromyelitis optica. Brain 2022;145:1379-1390  https://doi.org/10.1093/brain/awab394
  105. Solar P, Zamani A, Kubickova L, Dubovy P, Joukal M. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS 2020;17:35 
  106. Ghersi-Egea JF, Strazielle N, Catala M, Silva-Vargas V, Doetsch F, Engelhardt B. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol 2018;135:337-361  https://doi.org/10.1007/s00401-018-1807-1
  107. Margoni M, Gueye M, Meani A, Pagani E, Moiola L, Preziosa P, et al. Choroid plexus enlargement in paediatric multiple sclerosis: clinical relevance and effect of sex. J Neurol Neurosurg Psychiatry 2023;94:181-188  https://doi.org/10.1136/jnnp-2022-330343
  108. Bergsland N, Dwyer MG, Jakimovski D, Tavazzi E, Benedict RHB, Weinstock-Guttman B, et al. Association of choroid plexus inflammation on MRI with clinical disability progression over 5 years in patients with multiple sclerosis. Neurology 2023;100:e911-e920  https://doi.org/10.1212/WNL.0000000000201608
  109. Fleischer V, Gonzalez-Escamilla G, Ciolac D, Albrecht P, Kury P, Gruchot J, et al. Translational value of choroid plexus imaging for tracking neuroinflammation in mice and humans. Proc Natl Acad Sci U S A 2021;118:e2025000118 
  110. Muller J, Sinnecker T, Wendebourg MJ, Schlager R, Kuhle J, Schadelin S, et al. Choroid plexus volume in multiple sclerosis vs neuromyelitis optica spectrum disorder: a retrospective, cross-sectional analysis. Neurol Neuroimmunol Neuroinflamm 2022;9:e1147 
  111. Ricigliano VAG, Morena E, Colombi A, Tonietto M, Hamzaoui M, Poirion E, et al. Choroid plexus enlargement in inflammatory multiple sclerosis: 3.0-T MRI and translocator protein PET evaluation. Radiology 2021;301:166-177  https://doi.org/10.1148/radiol.2021204426
  112. Klistorner S, Van der Walt A, Barnett MH, Butzkueven H, Kolbe S, Parratt J, et al. Choroid plexus volume is enlarged in clinically isolated syndrome patients with optic neuritis. Mult Scler 2023;29:540-548  https://doi.org/10.1177/13524585231157206
  113. Klistorner S, Barnett MH, Parratt J, Yiannikas C, Graham SL, Klistorner A. Choroid plexus volume in multiple sclerosis predicts expansion of chronic lesions and brain atrophy. Ann Clin Transl Neurol 2022;9:1528-1537  https://doi.org/10.1002/acn3.51644
  114. Tonietto M, Poirion E, Lazzarotto A, Ricigliano V, Papeix C, Bottlaender M, et al. Periventricular remyelination failure in multiple sclerosis: a substrate for neurodegeneration. Brain 2023;146:182-194  https://doi.org/10.1093/brain/awac334
  115. Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol 2018;17:1016-1024  https://doi.org/10.1016/S1474-4422(18)30318-1
  116. Schubert JJ, Veronese M, Marchitelli L, Bodini B, Tonietto M, Stankoff B, et al. Dynamic 11C-PiB PET shows cerebrospinal fluid flow alterations in Alzheimer disease and multiple sclerosis. J Nucl Med 2019;60:1452-1460  https://doi.org/10.2967/jnumed.118.223834
  117. Carotenuto A, Cacciaguerra L, Pagani E, Preziosa P, Filippi M, Rocca MA. Glymphatic system impairment in multiple sclerosis: relation with brain damage and disability. Brain 2022;145:2785-2795  https://doi.org/10.1093/brain/awab454
  118. Taoka T, Masutani Y, Kawai H, Nakane T, Matsuoka K, Yasuno F, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases. Jpn J Radiol 2017;35:172-178  https://doi.org/10.1007/s11604-017-0617-z
  119. Cacciaguerra L, Carotenuto A, Pagani E, Mistri D, Radaelli M, Martinelli V, et al. Magnetic resonance imaging evaluation of perivascular space abnormalities in neuromyelitis optica. Ann Neurol 2022;92:173-183  https://doi.org/10.1002/ana.26419
  120. Iliff JJ, Nedergaard M. Is there a cerebral lymphatic system? Stroke 2013;44(6 Suppl 1):S93-S95  https://doi.org/10.1161/STROKEAHA.112.678698
  121. Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The glymphatic system: a beginner's guide. Neurochem Res 2015;40:2583-2599  https://doi.org/10.1007/s11064-015-1581-6
  122. Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM, et al. A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain 2002;125(Pt 7):1450-1461  https://doi.org/10.1093/brain/awf151
  123. Taoka T, Ito R, Nakamichi R, Nakane T, Kawai H, Naganawa S. Interstitial fluidopathy of the central nervous system: an umbrella term for disorders with impaired neurofluid dynamics. Magn Reson Med Sci 2022 Nov 25. [Epub]. https://doi.org/10.2463/mrms.rev.2022-0012 
  124. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol 2015;7:a020412 
  125. Bruck W, Bitsch A, Kolenda H, Bruck Y, Stiefel M, Lassmann H. Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 1997;42:783-793  https://doi.org/10.1002/ana.410420515
  126. Stone LA, Smith ME, Albert PS, Bash CN, Maloni H, Frank JA, et al. Blood-brain barrier disruption on contrast-enhanced MRI in patients with mild relapsing-remitting multiple sclerosis: relationship to course, gender, and age. Neurology 1995;45:1122-1126  https://doi.org/10.1212/WNL.45.6.1122
  127. Gaitan MI, Shea CD, Evangelou IE, Stone RD, Fenton KM, Bielekova B, et al. Evolution of the blood-brain barrier in newly forming multiple sclerosis lesions. Ann Neurol 2011;70:22-29  https://doi.org/10.1002/ana.22472
  128. Cotton F, Weiner HL, Jolesz FA, Guttmann CR. MRI contrast uptake in new lesions in relapsing-remitting MS followed at weekly intervals. Neurology 2003;60:640-646  https://doi.org/10.1212/01.WNL.0000046587.83503.1E
  129. Cramer SP, Modvig S, Simonsen HJ, Frederiksen JL, Larsson HB. Permeability of the blood-brain barrier predicts conversion from optic neuritis to multiple sclerosis. Brain 2015;138(Pt 9):2571-2583  https://doi.org/10.1093/brain/awv203
  130. Varatharaj A, Darekar A, Gawne-Cain M, Cramer SP, Larsson HB, Galea I. 009 Abnormal blood-brain barrier permeability in progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 2022;93:A16 
  131. Davis M, Auh S, Riva M, Richert ND, Frank JA, McFarland HF, et al. Ring and nodular multiple sclerosis lesions: a retrospective natural history study. Neurology 2010;74:851-856  https://doi.org/10.1212/WNL.0b013e3181d31df5
  132. Gaitan MI, Sati P, Inati SJ, Reich DS. Initial investigation of the blood-brain barrier in MS lesions at 7 tesla. Mult Scler 2013;19:1068-1073  https://doi.org/10.1177/1352458512471093
  133. Absinta M, Sati P, Gaitan MI, Maggi P, Cortese IC, Filippi M, et al. Seven-tesla phase imaging of acute multiple sclerosis lesions: a new window into the inflammatory process. Ann Neurol 2013;74:669-678  https://doi.org/10.1002/ana.23959
  134. Saadoun S, Papadopoulos MC. Aquaporin-4 in brain and spinal cord oedema. Neuroscience 2010;168:1036-1046  https://doi.org/10.1016/j.neuroscience.2009.08.019
  135. Shimizu F, Sano Y, Takahashi T, Haruki H, Saito K, Koga M, et al. Sera from neuromyelitis optica patients disrupt the blood-brain barrier. J Neurol Neurosurg Psychiatry 2012;83:288-297  https://doi.org/10.1136/jnnp-2011-300434
  136. Ito S, Mori M, Makino T, Hayakawa S, Kuwabara S. "Cloud-like enhancement" is a magnetic resonance imaging abnormality specific to neuromyelitis optica. Ann Neurol 2009;66:425-428  https://doi.org/10.1002/ana.21753
  137. Shah SS, Morris P, Buciuc M, Tajfirouz D, Wingerchuk DM, Weinshenker BG, et al. Frequency of asymptomatic optic nerve enhancement in a large retrospective cohort of patients with aquaporin-4+ NMOSD. Neurology 2022;99:e851-e857  https://doi.org/10.1212/WNL.0000000000200838
  138. Magana SM, Matiello M, Pittock SJ, McKeon A, Lennon VA, Rabinstein AA, et al. Posterior reversible encephalopathy syndrome in neuromyelitis optica spectrum disorders. Neurology 2009;72:712-717  https://doi.org/10.1212/01.wnl.0000343001.36493.ae
  139. Hyun JW, Kim SH, Jeong IH, Lee SH, Kim HJ. Bright spotty lesions on the spinal cord: an additional MRI indicator of neuromyelitis optica spectrum disorder? J Neurol Neurosurg Psychiatry 2015;86:1280-1282  https://doi.org/10.1136/jnnp-2014-309761
  140. Hyun JW, Lee HL, Park J, Kim J, Min JH, Kim BJ, et al. Brighter spotty lesions on spinal MRI help differentiate AQP4 antibody-positive NMOSD from MOGAD. Mult Scler 2022;28:989-992  https://doi.org/10.1177/13524585211060326
  141. Bonnier G, Roche A, Romascano D, Simioni S, Meskaldji D, Rotzinger D, et al. Advanced MRI unravels the nature of tissue alterations in early multiple sclerosis. Ann Clin Transl Neurol 2014;1:423-432  https://doi.org/10.1002/acn3.68
  142. Cacciaguerra L, Pagani E, Radaelli M, Mesaros S, Martinelli V, Ivanovic J, et al. MR T2-relaxation time as an indirect measure of brain water content and disease activity in NMOSD. J Neurol Neurosurg Psychiatry 2022;93:753-760  https://doi.org/10.1136/jnnp-2022-328956
  143. Aktas O, Smith MA, Rees WA, Bennett JL, She D, Katz E, et al. Serum glial fibrillary acidic protein: a neuromyelitis optica spectrum disorder biomarker. Ann Neurol 2021;89:895-910  https://doi.org/10.1002/ana.26067
  144. Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 2011;365:2188-2197  https://doi.org/10.1056/NEJMoa1100648
  145. Absinta M, Cortese IC, Vuolo L, Nair G, de Alwis MP, Ohayon J, et al. Leptomeningeal gadolinium enhancement across the spectrum of chronic neuroinflammatory diseases. Neurology 2017;88:1439-1444  https://doi.org/10.1212/WNL.0000000000003820
  146. Ineichen BV, Tsagkas C, Absinta M, Reich DS. Leptomeningeal enhancement in multiple sclerosis and other neurological diseases: a systematic review and meta-analysis. Neuroimage Clin 2022;33:102939 
  147. Harrison DM, Wang KY, Fiol J, Naunton K, Royal W 3rd, Hua J, et al. Leptomeningeal enhancement at 7T in multiple sclerosis: frequency, morphology, and relationship to cortical volume. J Neuroimaging 2017;27:461-468  https://doi.org/10.1111/jon.12444
  148. Absinta M, Vuolo L, Rao A, Nair G, Sati P, Cortese IC, et al. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology 2015;85:18-28  https://doi.org/10.1212/WNL.0000000000001587
  149. Mainero C, Louapre C. Meningeal inflammation in multiple sclerosis: the key to the origin of cortical lesions? Neurology 2015;85:12-13  https://doi.org/10.1212/WNL.0000000000001586
  150. Hildesheim FE, Ramasamy DP, Bergsland N, Jakimovski D, Dwyer MG, Hojnacki D, et al. Leptomeningeal, dura mater and meningeal vessel wall enhancements in multiple sclerosis. Mult Scler Relat Disord 2021;47:102653 
  151. Bhargava P, Wicken C, Smith MD, Strowd RE, Cortese I, Reich DS, et al. Trial of intrathecal rituximab in progressive multiple sclerosis patients with evidence of leptomeningeal contrast enhancement. Mult Scler Relat Disord 2019;30:136-140  https://doi.org/10.1016/j.msard.2019.02.013
  152. Jonas SN, Izbudak I, Frazier AA, Harrison DM. Longitudinal persistence of meningeal enhancement on postcontrast 7T 3D-FLAIR MRI in multiple sclerosis. AJNR Am J Neuroradiol 2018;39:1799-1805  https://doi.org/10.3174/ajnr.A5796
  153. Zivadinov R, Bergsland N, Carl E, Ramasamy DP, Hagemeier J, Dwyer MG, et al. Effect of teriflunomide and dimethyl fumarate on cortical atrophy and leptomeningeal inflammation in multiple sclerosis: a retrospective, observational, case-control pilot study. J Clin Med 2019;8:344 
  154. Makshakov G, Magonov E, Totolyan N, Nazarov V, Lapin S, Mazing A, et al. Leptomeningeal contrast enhancement is associated with disability progression and grey matter atrophy in multiple sclerosis. Neurol Res Int 2017;2017:8652463 
  155. Zivadinov R, Ramasamy DP, Hagemeier J, Kolb C, Bergsland N, Schweser F, et al. Evaluation of leptomeningeal contrast enhancement using pre-and postcontrast subtraction 3D-FLAIR imaging in multiple sclerosis. AJNR Am J Neuroradiol 2018;39:642-647  https://doi.org/10.3174/ajnr.A5541
  156. Bergsland N, Ramasamy D, Tavazzi E, Hojnacki D, Weinstock-Guttman B, Zivadinov R. Leptomeningeal contrast enhancement is related to focal cortical thinning in relapsing-remitting multiple sclerosis: a cross-sectional MRI study. AJNR Am J Neuroradiol 2019;40:620-625  https://doi.org/10.3174/ajnr.A6011
  157. Ighani M, Jonas S, Izbudak I, Choi S, Lema-Dopico A, Hua J, et al. No association between cortical lesions and leptomeningeal enhancement on 7-tesla MRI in multiple sclerosis. Mult Scler 2020;26:165-176  https://doi.org/10.1177/1352458519876037
  158. Zivadinov R, Ramasamy DP, Vaneckova M, Gandhi S, Chandra A, Hagemeier J, et al. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: a retrospective, pilot, observational longitudinal study. Mult Scler 2017;23:1336-1345  https://doi.org/10.1177/1352458516678083
  159. Zurawski J, Tauhid S, Chu R, Khalid F, Healy BC, Weiner HL, et al. 7T MRI cerebral leptomeningeal enhancement is common in relapsing-remitting multiple sclerosis and is associated with cortical and thalamic lesions. Mult Scler 2020;26:177-187  https://doi.org/10.1177/1352458519885106
  160. Absinta M, Ontaneda D. Controversial association between leptomeningeal enhancement and demyelinated cortical lesions in multiple sclerosis. Mult Scler 2020;26:135-136  https://doi.org/10.1177/1352458519892186
  161. Asgari N, Flanagan EP, Fujihara K, Kim HJ, Skejoe HP, Wuerfel J, et al. Disruption of the leptomeningeal blood barrier in neuromyelitis optica spectrum disorder. Neurol Neuroimmunol Neuroinflamm 2017;4:e343 
  162. Fan Y, Shan F, Lin SP, Long Y, Liang B, Gao C, et al. Dynamic change in magnetic resonance imaging of patients with neuromyelitis optica. Int J Neurosci 2016;126:448-454  https://doi.org/10.3109/00207454.2015.1055356
  163. Long Y, Chen M, Zhang B, Gao C, Zheng Y, Xie L, et al. Brain gadolinium enhancement along the ventricular and leptomeningeal regions in patients with aquaporin-4 antibodies in cerebral spinal fluid. J Neuroimmunol 2014;269:62-67  https://doi.org/10.1016/j.jneuroim.2014.02.006
  164. Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB, Lim KO. A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 1994;51:874-887  https://doi.org/10.1001/archneur.1994.00540210046012
  165. Bermel RA, Bakshi R. The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol 2006;5:158-170  https://doi.org/10.1016/S1474-4422(06)70349-0
  166. Grassiot B, Desgranges B, Eustache F, Defer G. Quantification and clinical relevance of brain atrophy in multiple sclerosis: a review. J Neurol 2009;256:1397-1412  https://doi.org/10.1007/s00415-009-5108-4
  167. De Stefano N, Stromillo ML, Giorgio A, Bartolozzi ML, Battaglini M, Baldini M, et al. Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J Neurol Neurosurg Psychiatry 2016;87:93-99  https://doi.org/10.1136/jnnp-2014-309903
  168. Cole JH, Raffel J, Friede T, Eshaghi A, Brownlee WJ, Chard D, et al. Longitudinal assessment of multiple sclerosis with the brain-age paradigm. Ann Neurol 2020;88:93-105  https://doi.org/10.1002/ana.25746
  169. Fisher E, Lee JC, Nakamura K, Rudick RA. Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 2008;64:255-265  https://doi.org/10.1002/ana.21436
  170. Filippi M, Preziosa P, Copetti M, Riccitelli G, Horsfield MA, Martinelli V, et al. Gray matter damage predicts the accumulation of disability 13 years later in MS. Neurology 2013;81:1759-1767  https://doi.org/10.1212/01.wnl.0000435551.90824.d0
  171. Sicotte NL, Kern KC, Giesser BS, Arshanapalli A, Schultz A, Montag M, et al. Regional hippocampal atrophy in multiple sclerosis. Brain 2008;131(Pt 4):1134-1141  https://doi.org/10.1093/brain/awn030
  172. Rocca MA, Longoni G, Pagani E, Boffa G, Colombo B, Rodegher M, et al. In vivo evidence of hippocampal dentate gyrus expansion in multiple sclerosis. Hum Brain Mapp 2015;36:4702-4713  https://doi.org/10.1002/hbm.22946
  173. Cacciaguerra L, Pagani E, Mesaros S, Dackovic J, Dujmovic-Basuroski I, Drulovic J, et al. Dynamic volumetric changes of hippocampal subfields in clinically isolated syndrome patients: a 2-year MRI study. Mult Scler 2019;25:1232-1242  https://doi.org/10.1177/1352458518787347
  174. Planche V, Koubiyr I, Romero JE, Manjon JV, Coupe P, Deloire M, et al. Regional hippocampal vulnerability in early multiple sclerosis: dynamic pathological spreading from dentate gyrus to CA1. Hum Brain Mapp 2018;39:1814-1824  https://doi.org/10.1002/hbm.23970
  175. Longoni G, Rocca MA, Pagani E, Riccitelli GC, Colombo B, Rodegher M, et al. Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS. Brain Struct Funct 2015;220:435-444  https://doi.org/10.1007/s00429-013-0665-9
  176. Houtchens MK, Benedict RH, Killiany R, Sharma J, Jaisani Z, Singh B, et al. Thalamic atrophy and cognition in multiple sclerosis. Neurology 2007;69:1213-1223  https://doi.org/10.1212/01.wnl.0000276992.17011.b5
  177. Mesaros S, Rocca MA, Absinta M, Ghezzi A, Milani N, Moiola L, et al. Evidence of thalamic gray matter loss in pediatric multiple sclerosis. Neurology 2008;70(13 Pt 2):1107-1112  https://doi.org/10.1212/01.wnl.0000291010.54692.85
  178. Aubert-Broche B, Fonov V, Ghassemi R, Narayanan S, Arnold DL, Banwell B, et al. Regional brain atrophy in children with multiple sclerosis. Neuroimage 2011;58:409-415  https://doi.org/10.1016/j.neuroimage.2011.03.025
  179. Mesaros S, Rocca MA, Pagani E, Sormani MP, Petrolini M, Comi G, et al. Thalamic damage predicts the evolution of primary-progressive multiple sclerosis at 5 years. AJNR Am J Neuroradiol 2011;32:1016-1020  https://doi.org/10.3174/ajnr.A2430
  180. Rocca MA, Mesaros S, Pagani E, Sormani MP, Comi G, Filippi M. Thalamic damage and long-term progression of disability in multiple sclerosis. Radiology 2010;257:463-469  https://doi.org/10.1148/radiol.10100326
  181. Cortese R, Battaglini M, Prados F, Gentile G, Luchetti L, Bianchi A, et al. Investigating grey matter atrophy and its relationship with white matter lesions in MS, MOGAD and AQP4-NMOSD. Mult Scler J 2022;28(Suppl 3):27-29 
  182. Rocca MA, Preziosa P, Mesaros S, Pagani E, Dackovic J, Stosic-Opincal T, et al. Clinically isolated syndrome suggestive of multiple sclerosis: dynamic patterns of gray and white matter changes-a 2-year MR imaging study. Radiology 2016;278:841-853  https://doi.org/10.1148/radiol.2015150532
  183. Moccia M, Prados F, Filippi M, Rocca MA, Valsasina P, Brownlee WJ, et al. Longitudinal spinal cord atrophy in multiple sclerosis using the generalized boundary shift integral. Ann Neurol 2019;86:704-713  https://doi.org/10.1002/ana.25571
  184. Rocca MA, Valsasina P, Meani A, Gobbi C, Zecca C, Rovira A, et al. Clinically relevant cranio-caudal patterns of cervical cord atrophy evolution in MS. Neurology 2019;93:e1852-e1866  https://doi.org/10.1212/WNL.0000000000008466
  185. Valsasina P, Aboulwafa M, Preziosa P, Messina R, Falini A, Comi G, et al. Cervical cord T1-weighted hypointense lesions at MR imaging in multiple sclerosis: relationship to cord atrophy and disability. Radiology 2018;288:234-244  https://doi.org/10.1148/radiol.2018172311
  186. Bonacchi R, Pagani E, Meani A, Cacciaguerra L, Preziosa P, De Meo E, et al. Clinical relevance of multiparametric MRI assessment of cervical cord damage in multiple sclerosis. Radiology 2020;296:605-615  https://doi.org/10.1148/radiol.2020200430
  187. Havrdova E, Arnold DL, Cohen JA, Hartung HP, Fox EJ, Giovannoni G, et al. Alemtuzumab CARE-MS I 5-year follow-up: durable efficacy in the absence of continuous MS therapy. Neurology 2017;89:1107-1116  https://doi.org/10.1212/WNL.0000000000004313
  188. De Stefano N, Giorgio A, Battaglini M, De Leucio A, Hicking C, Dangond F, et al. Reduced brain atrophy rates are associated with lower risk of disability progression in patients with relapsing multiple sclerosis treated with cladribine tablets. Mult Scler 2018;24:222-226  https://doi.org/10.1177/1352458517690269
  189. Lee H, Narayanan S, Brown RA, Chen JT, Atkins HL, Freedman MS, et al. Brain atrophy after bone marrow transplantation for treatment of multiple sclerosis. Mult Scler 2017;23:420-431  https://doi.org/10.1177/1352458516650992
  190. Sastre-Garriga J, Pareto D, Battaglini M, Rocca MA, Ciccarelli O, Enzinger C, et al. MAGNIMS consensus recommendations on the use of brain and spinal cord atrophy measures in clinical practice. Nat Rev Neurol 2020;16:171-182  https://doi.org/10.1038/s41582-020-0314-x
  191. Masuda H, Mori M, Hirano S, Uzawa A, Uchida T, Muto M, et al. Silent progression of brain atrophy in aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder. J Neurol Neurosurg Psychiatry 2022;93:32-40  https://doi.org/10.1136/jnnp-2021-326386
  192. Chanson JB, Lamy J, Rousseau F, Blanc F, Collongues N, Fleury M, et al. White matter volume is decreased in the brain of patients with neuromyelitis optica. Eur J Neurol 2013;20:361-367  https://doi.org/10.1111/j.1468-1331.2012.03867.x
  193. Duan Y, Liu Y, Liang P, Jia X, Ye J, Dong H, et al. White matter atrophy in brain of neuromyelitis optica: a voxel-based morphometry study. Acta Radiol 2014;55:589-593  https://doi.org/10.1177/0284185113501815
  194. Blanc F, Noblet V, Jung B, Rousseau F, Renard F, Bourre B, et al. White matter atrophy and cognitive dysfunctions in neuromyelitis optica. PLoS One 2012;7:e33878 
  195. Duan Y, Liu Y, Liang P, Jia X, Yu C, Qin W, et al. Comparison of grey matter atrophy between patients with neuromyelitis optica and multiple sclerosis: a voxel-based morphometry study. Eur J Radiol 2012;81:e110-e114  https://doi.org/10.1016/j.ejrad.2011.01.065
  196. Liu Y, Xie T, He Y, Duan Y, Huang J, Ren Z, et al. Cortical thinning correlates with cognitive change in multiple sclerosis but not in neuromyelitis optica. Eur Radiol 2014;24:2334-2343  https://doi.org/10.1007/s00330-014-3239-1
  197. Liu Y, Fu Y, Schoonheim MM, Zhang N, Fan M, Su L, et al. Structural MRI substrates of cognitive impairment in neuromyelitis optica. Neurology 2015;85:1491-1499  https://doi.org/10.1212/WNL.0000000000002067
  198. Chien C, Scheel M, Schmitz-Hubsch T, Borisow N, Ruprecht K, Bellmann-Strobl J, et al. Spinal cord lesions and atrophy in NMOSD with AQP4-IgG and MOG-IgG associated autoimmunity. Mult Scler 2019;25:1926-1936  https://doi.org/10.1177/1352458518815596
  199. Cacciaguerra L, Valsasina P, Mesaros S, Martinelli V, Drulovic J, Filippi M, et al. Spinal cord atrophy in neuromyelitis optica spectrum disorders is spatially related to cord lesions and disability. Radiology 2020;297:154-163  https://doi.org/10.1148/radiol.2020192664
  200. Nakamura K, Chen JT, Ontaneda D, Fox RJ, Trapp BD. T1-/T2-weighted ratio differs in demyelinated cortex in multiple sclerosis. Ann Neurol 2017;82:635-639  https://doi.org/10.1002/ana.25019
  201. Righart R, Biberacher V, Jonkman LE, Klaver R, Schmidt P, Buck D, et al. Cortical pathology in multiple sclerosis detected by the T1/T2-weighted ratio from routine magnetic resonance imaging. Ann Neurol 2017;82:519-529  https://doi.org/10.1002/ana.25020
  202. reziosa P, Bouman PM, Kiljan S, Steenwijk MD, Meani A, Pouwels PJ, et al. Neurite density explains cortical T1-weighted/T2-weighted ratio in multiple sclerosis. J Neurol Neurosurg Psychiatry 2021;92:790-792  https://doi.org/10.1136/jnnp-2020-324391
  203. Tu TW, Williams RA, Lescher JD, Jikaria N, Turtzo LC, Frank JA. Radiological-pathological correlation of diffusion tensor and magnetization transfer imaging in a closed head traumatic brain injury model. Ann Neurol 2016;79:907-920  https://doi.org/10.1002/ana.24641
  204. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 1994;103:247-254  https://doi.org/10.1006/jmrb.1994.1037
  205. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012;61:1000-1016 https://doi.org/10.1016/j.neuroimage.2012.03.072